
Number Systems

Common Number Systems

System Base Symbols
Used by
humans?

Used in
computers?

Decimal 10 0, 1, … 9 Yes No

Binary 2 0, 1 No Yes

Octal 8 0, 1, … 7 No No

Hexa-
decimal

16 0, 1, … 9,
A, B, … F

No No

Conversion Among Bases
• The possibilities:

Hexadeci
mal

Decimal Octal

Binary

Quick Example
2510 = 110012 = 318 = 1916

Base

Binary to Decimal
• Technique

– Multiply each bit by 2n, where n is the “weight” of
the bit

– The weight is the position of the bit, starting from
0 on the right

– Add the results

Example

1010112 => 1 x 20 = 1
1 x 21 = 2
0 x 22 = 0
1 x 23 = 8
0 x 24 = 0
1 x 25 = 32

4310

Bit “0”

Octal to Decimal

• Technique
– Multiply each bit by 8n, where n is the “weight” of

the bit
– The weight is the position of the bit, starting from

0 on the right
– Add the results

Example

7248 => 4 x 80 = 4
2 x 81 = 16
7 x 82 = 448

46810

Hexadecimal to Decimal

• Technique
– Multiply each bit by 16n, where n is the “weight”

of the bit
– The weight is the position of the bit, starting from

0 on the right
– Add the results

Example

ABC16 => C x 160 = 12 x 1 = 12
B x 161 = 11 x 16 = 176
A x 162 = 10 x 256 = 2560

274810

Decimal to Binary

• Technique
– Divide by two, keep track of the remainder
– First remainder is bit 0 (LSB, least-significant bit)
– Second remainder is bit 1
– Etc.

Example
12510 = ?2

2 125
62 12
31 02
15 12
7 12
3 12
1 12
0 1

12510 = 11111012

Octal to Binary

Hexadecimal

Decimal Octal

Binary

Octal to Binary

• Technique
– Convert each octal digit to a 3-bit equivalent

binary representation

Example
7058 = ?2

7 0 5

111 000 101

7058 = 1110001012

Hexadecimal to Binary

Hexadecimal

Decimal Octal

Binary

Hexadecimal to Binary

• Technique
– Convert each hexadecimal digit to a 4-bit

equivalent binary representation

Example
10AF16 = ?2

1 0 A F

0001 0000 1010 1111

10AF16 = 00010000101011112

Decimal to Octal

Hexadecimal

Decimal Octal

Binary

Decimal to Octal

• Technique
– Divide by 8
– Keep track of the remainder

Example
123410 = ?8

8 1234
154 28
19 28
2 38
0 2

123410 = 23228

Decimal to Hexadecimal

Hexadecimal

Decimal Octal

Binary

Decimal to Hexadecimal

• Technique
– Divide by 16
– Keep track of the remainder

Example
123410 = ?16

123410 = 4D216

16 1234
77 216
4 13 = D16
0 4

Binary to Octal

Hexadecimal

Decimal Octal

Binary

Binary to Octal

• Technique
– Group bits in threes, starting on right
– Convert to octal digits

Example
10110101112 = ?8

1 011 010 111

1 3 2 7

10110101112 = 13278

Binary to Hexadecimal

Hexadecimal

Decimal Octal

Binary

Binary to Hexadecimal

• Technique
– Group bits in fours, starting on right
– Convert to hexadecimal digits

Example
10101110112 = ?16

10 1011 1011

2 B B

10101110112 = 2BB16

Octal to Hexadecimal

Hexadecimal

Decimal Octal

Binary

Octal to Hexadecimal

• Technique
– Use binary as an intermediary

Example
10768 = ?16

1 0 7 6

001 000 111 110

2 3 E

10768 = 23E16

Hexadecimal to Octal

Hexadecimal

Decimal Octal

Binary

Hexadecimal to Octal

• Technique
– Use binary as an intermediary

Example
1F0C16 = ?8

1 F 0 C

0001 1111 0000 1100

1 7 4 1 4

1F0C16 = 174148

Common Powers (1 of 2)

• Base 10
Power Preface Symbol

10-12 pico p

10-9 nano n

10-6 micro 

10-3 milli m

103 kilo k

106 mega M

109 giga G

1012 tera T

Value

.000000000001

.000000001

.000001

.001

1000

1000000

1000000000

1000000000000

Common Powers (2 of 2)

• Base 2 Power Preface Symbol

210 kilo k

220 mega M

230 Giga G

Value

1024

1048576

1073741824

• What is the value of “k”, “M”, and “G”?
• In computing, particularly w.r.t. memory,

the base-2 interpretation generally applies

Binary Addition (1 of 2)

• Two 1-bit values

A B A + B
0 0 0
0 1 1
1 0 1
1 1 10

“two”

Binary Addition (2 of 2)

• Two n-bit values
– Add individual bits
– Propagate carries
– E.g.,

10101 21
+ 11001 + 25
101110 46

11

Multiplication (1 of 3)

• Decimal (just for fun)

pp. 39

35
x 105
175
000
35
3675

Multiplication (3 of 3)

• Binary, two n-bit values
– As with decimal values
– E.g., 1110

x 1011
1110
1110
0000
1110
10011010

Fractions

• Decimal to decimal (just for fun)

pp. 46-
50

3.14 => 4 x 10-2 = 0.04
1 x 10-1 = 0.1
3 x 100 = 3

3.14

Fractions

• Binary to decimal

pp. 46-
50

10.1011 => 1 x 2-4 = 0.0625
1 x 2-3 = 0.125
0 x 2-2 = 0.0
1 x 2-1 = 0.5
0 x 20 = 0.0
1 x 21 = 2.0

2.6875

Fractions

• Decimal to binary

p. 50

3.14579

.14579
x 2
0.29158
x 2
0.58316
x 2
1.16632
x 2
0.33264
x 2
0.66528
x 2
1.33056

etc.11.001001...

Boolean Algebra

Introduction

• 1854: Logical algebra was published by
George Boole known today as “Boolean
Algebra”
– It’s a convenient way and systematic way of

expressing and analyzing the operation of logic
circuits.

• 1938: Claude Shannon was the first to apply
Boole’s work to the analysis and design of
logic circuits.

Boolean Operations & Expressions

• Variable – a symbol used to represent a logical
quantity.

• Complement – the inverse of a variable and is
indicated by a bar over the variable.

• Literal – a variable or the complement of a
variable.

Laws & Rules of Boolean Algebra

• The basic laws of Boolean algebra:
– The commutative laws
– The associative laws

– The distributive laws

Commutative Laws

• The commutative law of addition for two
variables is written as: A+B = B+A

• The commutative law of multiplication for
two variables is written as: AB = BA

A
B A+B

B
A B+A

A
B AB

B
A B+A

Associative Laws

• The associative law of addition for 3 variables
is written as: A+(B+C) = (A+B)+C

• The associative law of multiplication for 3
variables is written as: A(BC) = (AB)C

A

B
A+(B+C)

C

A

B
(A+B)+C

C

A

B
A(BC)

C

A

B
(AB)C

C





B+C

A+B

BC

AB

Distributive Laws

• The distributive law is written for 3 variables as
follows: A(B+C) = AB + AC

B

C

A

B+C


A

B

C

A
XX

AB

AC

X=A(B+C) X=AB+AC

Rules of Boolean Algebra

1.6
.5

1.4
00.3
11.2

0.1









AA
AAA

AA
A
A

AA

BCACABA
BABAA

AABA
AA

AA
AAA











))(.(12
.11
.10

.9

0.8
.7

DeMorgan’s Theorems

• DeMorgan’s theorems provide mathematical
verification of:
– the equivalency of the NAND and negative-OR

gates
– the equivalency of the NOR and negative-AND

gates.

DeMorgan’s Theorems
• The complement of two or

more ANDed variables is
equivalent to the OR of the
complements of the
individual variables.

• The complement of two or
more ORed variables is
equivalent to the AND of
the complements of the
individual variables.

YXYX 

YXYX 

NAND Negative-OR

Negative-ANDNOR

DeMorgan’s Theorems (Exercises)

• Apply DeMorgan’s theorems to the expressions:

ZYXW

ZYX

ZYX

ZYX









DeMorgan’s Theorems (Exercises)

• Apply DeMorgan’s theorems to the expressions:

)(

)(

FEDCBA

EFDCBA

DEFABC

DCBA









Boolean Analysis of Logic Circuits

• Boolean algebra provides a concise way to
express the operation of a logic circuit formed
by a combination of logic gates
– so that the output can be determined for various

combinations of input values.

Boolean Expression for a Logic Circuit

• To derive the Boolean expression for a given
logic circuit, begin at the left-most inputs and
work toward the final output, writing the
expression for each gate.

C
D

B

A

CD

B+CD

A(B+CD)

Constructing a Truth Table for a Logic
Circuit

• Once the Boolean expression for a given logic
circuit has been determined, a truth table that
shows the output for all possible values of the
input variables can be developed.
– Let’s take the previous circuit as the example:

A(B+CD)
– There are four variables, hence 16 (24)

combinations of values are possible.

Constructing a Truth Table for a Logic
Circuit

• Evaluating the expression
– To evaluate the expression A(B+CD), first find the

values of the variables that make the expression
equal to 1 (using the rules for Boolean add &
mult).

– In this case, the expression equals 1 only if A=1
and B+CD=1 because

A(B+CD) = 1·1 = 1

Constructing a Truth Table for a Logic
Circuit

• Evaluating the expression (cont’)
– Now, determine when B+CD term equals 1.
– The term B+CD=1 if either B=1 or CD=1 or if both

B and CD equal 1 because
B+CD = 1+0 = 1
B+CD = 0+1 = 1
B+CD = 1+1 = 1

• The term CD=1 only if C=1 and D=1

Constructing a Truth Table for a Logic
Circuit

• Evaluating the expression (cont’)
– Summary:
– A(B+CD)=1

• When A=1 and B=1 regardless of the values of C and D
• When A=1 and C=1 and D=1 regardless of the value of B

– The expression A(B+CD)=0 for all other value
combinations of the variables.

Constructing a Truth Table for a Logic
Circuit

• Putting the results in
truth table format

INPUTSINPUTS OUTPUTOUTPUT

AA BB CC DD A(B+CD)A(B+CD)

00 00 00 00

00 00 00 11

00 00 11 00

00 00 11 11

00 11 00 00

00 11 00 11

00 11 11 00

00 11 11 11

11 00 00 00

11 00 00 11

11 00 11 00

11 00 11 11

11 11 00 00

11 11 00 11

11 11 11 00

11 11 11 11

INPUTSINPUTS OUTPUTOUTPUT

AA BB CC DD A(B+CD)A(B+CD)

00 00 00 00

00 00 00 11

00 00 11 00

00 00 11 11

00 11 00 00

00 11 00 11

00 11 11 00

00 11 11 11

11 00 00 00

11 00 00 11

11 00 11 00

11 00 11 11

11 11 00 00 11

11 11 00 11 11

11 11 11 00 11

11 11 11 11 11

When A=1 and
B=1 regardless
of the values
of C and D
When A=1 and C=1
and D=1 regardless of
the value of B

A(B+CD)=1

INPUTSINPUTS OUTPUTOUTPUT

AA BB CC DD A(B+CD)A(B+CD)

00 00 00 00

00 00 00 11

00 00 11 00

00 00 11 11

00 11 00 00

00 11 00 11

00 11 11 00

00 11 11 11

11 00 00 00

11 00 00 11

11 00 11 00

11 00 11 11 11

11 11 00 00 11

11 11 00 11 11

11 11 11 00 11

11 11 11 11 11

INPUTSINPUTS OUTPUTOUTPUT

AA BB CC DD A(B+CD)A(B+CD)

00 00 00 00 00

00 00 00 11 00

00 00 11 00 00

00 00 11 11 00

00 11 00 00 00

00 11 00 11 00

00 11 11 00 00

00 11 11 11 00

11 00 00 00 00

11 00 00 11 00

11 00 11 00 00

11 00 11 11 11

11 11 00 00 11

11 11 00 11 11

11 11 11 00 11

11 11 11 11 11

Karnaugh Maps
• Boolean algebra helps us simplify expressions and

circuits

• Karnaugh Map: A graphical technique for simplifying
a Boolean expression into either form:
– minimal sum of products (MSP)
– minimal product of sums (MPS)

• Goal of the simplification.
– There are a minimal number of product/sum terms
– Each term has a minimal number of literals

• Circuit-wise, this leads to a minimal two-level
implementation

Re-arranging the Truth Table
• A two-variable function has four possible minterms. We can re-

arrange
these minterms into a Karnaugh map

• Now we can easily see which minterms contain common literals
– Minterms on the left and right sides contain y’ and y respectively
– Minterms in the top and bottom rows contain x’ and x respectively

x y minterm
0 0 x’y’
0 1 x’y
1 0 xy’
1 1 xy

Y

0 1
0 x’y’ x’y

X
1 xy’ xy

Y

0 1
0 x’y’ x’y

X
1 xy’ xy

Y’ Y
X’ x’y’ x’y
X xy’ xy

Karnaugh Map Simplifications
• Imagine a two-variable sum of minterms:

x’y’ + x’y

• Both of these minterms appear in the top row of a Karnaugh
map, which
means that they both contain the literal x’

• What happens if you simplify this expression using Boolean
algebra?

x’y’ + x’y = x’(y’ + y) [Distributive]
= x’  1 [y + y’ = 1]
= x’ [x  1 = x]

Y
x’y’ x’y

X xy’ xy

More Two-Variable Examples
• Another example expression is x’y + xy

– Both minterms appear in the right side, where y is
uncomplemented

– Thus, we can reduce x’y + xy to just y

• How about x’y’ + x’y + xy?
– We have x’y’ + x’y in the top row, corresponding to x’
– There’s also x’y + xy in the right side, corresponding

to y
– This whole expression can be reduced to x’ + y

Y
x’y’ x’y

X xy’ xy

Y
x’y’ x’y

X xy’ xy

A Three-Variable Karnaugh Map
• For a three-variable expression with inputs x, y, z,

the arrangement of
minterms is more tricky:

• Another way to label the K-map (use whichever you
like):

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

Y
m0 m1 m3 m2

X m4 m5 m7 m6

Z

YZ
00 01 11 10

0 x’y’z’ x’y’z x’yz x’yz’
X

1 xy’z’ xy’z xyz xyz’

 YZ
 00 01 11 10

X
0 m0 m1 m3 m2
1 m4 m5 m7 m6

Why the funny ordering?
• With this ordering, any group of 2, 4 or 8 adjacent squares on the map

contains common literals that can be factored out

• “Adjacency” includes wrapping around the left and right sides:

• We’ll use this property of adjacent squares to do our simplifications.

x’y’z + x’yz
= x’z(y’ + y)
= x’z  1
= x’z

x’y’z’ + xy’z’ + x’yz’ + xyz’
= z’(x’y’ + xy’ + x’y + xy)
= z’(y’(x’ + x) + y(x’ + x))
= z’(y’+y)
= z’

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

K-maps From Truth Tables
• We can fill in the K-map directly from a truth

table
– The output in row i of the table goes into square mi of

the K-map
– Remember that the rightmost columns of the K-map

are “switched”

Y
m0 m1 m3 m2

X m4 m5 m7 m6

Z

x y z f(x ,y ,z)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0

1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Y
0 1 0 0

X 0 1 1 1
Z

71

Reading the MSP from the K-map
• You can find the minimal SoP expression

– Each rectangle corresponds to one product term
– The product is determined by finding the common

literals in that
rectangle

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

Y
0 1 0 0

X 0 1 1 1
Z

xyy’z

F(x,y,z)= y’z + xy

72

Grouping the Minterms Together
• The most difficult step is grouping together all

the 1s in the K-map
– Make rectangles around groups of one, two, four or

eight 1s
– All of the 1s in the map should be included in at least

one rectangle
– Do not include any of the 0s
– Each group corresponds to one product term

Y
0 1 0 0

X 0 1 1 1
Z

73

For the Simplest Result
• Make as few rectangles as possible, to

minimize the number of products in the final
expression.

• Make each rectangle as large as possible, to
minimize the number of literals in each term.

• Rectangles can be overlapped, if that makes
them larger.

K-map Simplification of SoP Expressions
• Let’s consider simplifying f(x,y,z) = xy + y’z + xz

• You should convert the expression into a sum of minterms form,
– The easiest way to do this is to make a truth table for the function, and

then read off the minterms
– You can either write out the literals or use the minterm shorthand

• Here is the truth table and sum of minterms for our example:

x y z f(x,y,z)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

f(x,y,z) = x’y’z + xy’z + xyz’ + xyz
= m1 + m5 + m6 + m7

Unsimplifying Expressions
• You can also convert the expression to a sum of minterms with Boolean

algebra
– Apply the distributive law in reverse to add in missing variables.
– Very few people actually do this, but it’s occasionally useful.

• In both cases, we’re actually “unsimplifying” our example expression
– The resulting expression is larger than the original one!
– But having all the individual minterms makes it easy to combine them

together with the K-map

xy + y’z + xz = (xy  1) + (y’z  1) + (xz  1)
= (xy  (z’ + z)) + (y’z  (x’ + x)) + (xz  (y’ + y))
= (xyz’ + xyz) + (x’y’z + xy’z) + (xy’z + xyz)
= xyz’ + xyz + x’y’z + xy’z
= m1 + m5 + m6 + m7

76

Making the Example K-map
• In our example, we can write f(x,y,z) in two

equivalent ways

• In either case, the resulting K-map is shown
below

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

f(x,y,z) = x’y’z + xy’z + xyz’ + xyz Y
m0 m1 m3 m2

X m4 m5 m7 m6

Z

f(x,y,z) = m1 + m5 + m6 + m7

Y
0 1 0 0

X 0 1 1 1
Z

77

Practice K-map 1
• Simplify the sum of minterms m1 + m3 + m5 + m6

Y

X
Z

Y
m0 m1 m3 m2

X m4 m5 m7 m6

Z

78

Solutions for Practice K-map 1
• Here is the filled in K-map, with all groups shown

– The magenta and green groups overlap, which makes
each of them as
large as possible

– Minterm m6 is in a group all by its lonesome

• The final MSP here is x’z + y’z + xyz’

Y
0 1 1 0

X 0 1 0 1
Z

79

K-maps can be tricky!
• There may not necessarily be a unique MSP. The K-map below yields two

valid and equivalent MSPs, because there are two possible ways to
include minterm m7

• Remember that overlapping groups is possible, as shown above

Y
0 1 0 1

X 0 1 1 1
Z

y’z + yz’ + xy y’z + yz’ + xz

Y
0 1 0 1

X 0 1 1 1
Z

Y
0 1 0 1

X 0 1 1 1
Z

80

Four-variable K-maps – f(W,X,Y,Z)
• We can do four-variable expressions too!

– The minterms in the third and fourth columns, and in the third and
fourth rows, are switched around.

– Again, this ensures that adjacent squares have common literals

• Grouping minterms is similar to the three-variable case, but:
– You can have rectangular groups of 1, 2, 4, 8 or 16 minterms
– You can wrap around all four sides

81

Four-variable K-maps

Y
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y
w’x’y’z’ w’x’y’z w’x’yz w’x’yz’
w’xy’z’ w’xy’z w’xyz w’xyz’
wxy’z’ wxy’z wxyz wxyz’

X
W

wx’y’z’ wx’y’z wx’yz wx’yz’
Z

82

Example: Simplify m0+m2+m5+m8+m10+m13

• The expression is already a sum of minterms, so here’s the K-
map:

• We can make the following groups, resulting in the MSP x’z’ +
xy’z

Y
1 0 0 1
0 1 0 0
0 1 0 0

X
W

1 0 0 1
Z

Y
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y
1 0 0 1
0 1 0 0
0 1 0 0

X
W

1 0 0 1
Z

Y
w’x’y’z’ w’x’y’z w’x’yz w’x’yz’
w’xy’z’ w’xy’z w’xyz w’xyz’
wxy’z’ wxy’z wxyz wxyz’

X
W

wx’y’z’ wx’y’z wx’yz wx’yz’
Z

83

Five-variable K-maps – f(V,W,X,Y,Z)

V= 0 V= 1

Y
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y
m16 m17 m19 m8

m20 m21 m23 m22

m28 m29 m31 m30
X

W
m24 m25 m27 m26

Z

84

Simplify f(V,W,X,Y,Z)=Σm(0,1,4,5,6,11,12,14,16,20,22,28,30,31)

V= 0 V= 1

1 1

1 1 1

1

1 1

1

1 1

1 11

f = XZ’ Σm(4,6,12,14,20,22,28,30)
+ V’W’Y’ Σm(0,1,4,5)
+ W’Y’Z’ Σm(0,4,16,20)
+ VWXY Σm(30,31)
+ V’WX’YZ m11

85

PoS Optimization

• Maxterms are grouped to find minimal PoS
expression

x +y+z x+y+z’ x+y’+z’ x+y’+z

x’ +y+z x’+y+z’ x’+y’+z’ x’+y’+z

00 01 11 10

0

1
x

yz

PoS Optimization
• F(W,X,Y,Z)= ∏ M(0,1,2,4,5)

x +y+z x+y+z’ x+y’+z’ x+y’+z

x’ +y+z x’+y+z’ x’+y’+z’ x’+y’+z

00 01 11 10

0

1
x

yz

0 0 1 0

0 0 1 1

00 01 11 10

0

1
x

yz

F(W,X,Y,Z)= Y . (X + Z)

87

PoS Optimization from SoP
F(W,X,Y,Z)= Σm(0,1,2,5,8,9,10)

= ∏ M(3,4,6,7,11,12,13,14,15)

0

0 00

0

0 0 0 0

F(W,X,Y,Z)= (W’ + X’)(Y’ + Z’)(X’ + Z)

Or,

F(W,X,Y,Z)= X’Y’ + X’Z’ + W’Y’Z

Which one is the minimal one?

88

SoP Optimization from PoS
F(W,X,Y,Z)= ∏ M(0,2,3,4,5,6)

= Σm(1,7,8,9,10,11,12,13,14,15)

1

1

1 1 1 1

1 1 1 1

F(W,X,Y,Z)= W + XYZ + X’Y’Z

89

I don’t care!
• You don’t always need all 2n input combinations in an n-variable function

– If you can guarantee that certain input combinations never occur
– If some outputs aren’t used in the rest of the circuit

• We mark don’t-care outputs in truth tables and K-maps with Xs.

• Within a K-map, each X can be considered as either 0 or 1. You should pick
the interpretation that allows for the most simplification.

x y z f(x,y,z)
0 0 0 0
0 0 1 1
0 1 0 X
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 X
1 1 1 1

90

 Y
 1 0 0 1
 1 1 x 0

0 x 1 1
X

W
1 0 0 x

 Z

Practice K-map
• Find a MSP for

f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z) =
m(7,10,13)

This notation means that input combinations
wxyz = 0111, 1010 and 1101
(corresponding to minterms m7, m10 and m13) are
unused.

91

Solutions for Practice K-map
• Find a MSP for: f(w,x,y,z) = m(0,2,4,5,8,14,15),

d(w,x,y,z) = m(7,10,13)
Y

1 1
1 1 x

x 1 1
X

W
1 x

Z

f(w,x,y,z)= x’z’ + w’xy’ + wxy

92

K-map Summary
• K-maps are an alternative to algebra for simplifying

expressions
– The result is a MSP/MPS, which leads to a minimal two-level circuit
– It’s easy to handle don’t-care conditions
– K-maps are really only good for manual simplification of small

expressions...

• Things to keep in mind:
– Remember the correct order of minterms/maxterms on the K-map
– When grouping, you can wrap around all sides of the K-map, and

your groups can overlap
– Make as few rectangles as possible, but make each of them as large

as possible. This leads to fewer, but simpler, product terms
– There may be more than one valid solution

Tabulation Method – STEP 1STEP 1
1. Partition Prime Implicants (or minterms) According to Number of 1’s

2. Check Adjacent Classes for Cube Merging Building a New List

3. If Entry in New List Covers Entry in Current List – Disregard Current
List Entry

4. If Current List = New List
HALT

Else
Current List  New List
New List  NULL
Go To Step 1

STEP 1 - EXAMPLE

f on = {m0, m1, m2, m3, m5, m8, m10, m11, m13, m15} =  (0, 1, 2, 3, 5, 8, 10, 11, 13, 15)

Minterm Cube
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
8 1 0 0 0
3 0 0 1 1
5 0 1 0 1

10 1 0 1 0
11 1 0 1 1
13 1 1 0 1
15 1 1 1 1

STEP 1 - EXAMPLE

f on = {m0, m1, m2, m3, m5, m8, m10, m11, m13, m15} =  (0, 1, 2, 3, 5, 8, 10, 11, 13, 15)

Minterm Cube
0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
8 1 0 0 0 
3 0 0 1 1 
5 0 1 0 1 

10 1 0 1 0 
11 1 0 1 1 
13 1 1 0 1 
15 1 1 1 1 

Minterm Cube
0,1 0 0 0 -
0,2 0 0 - 0
0,8 - 0 0 0
1,3 0 0 - 1
1,5 0 - 0 1
2,3 0 0 1 -

2,10 - 0 1 0
8,10 1 0 - 0
3,11 - 0 1 1
5,13 - 1 0 1

10,11 1 0 1 -
11,15 1 - 1 1
13,15 1 1 - 1

STEP 1 - EXAMPLE

f on = {m0, m1, m2, m3, m5, m8, m10, m11, m13, m15} =  (0, 1, 2, 3, 5, 8, 10, 11, 13, 15)

Minterm Cube
0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
8 1 0 0 0 
3 0 0 1 1 
5 0 1 0 1 

10 1 0 1 0 
11 1 0 1 1 
13 1 1 0 1 
15 1 1 1 1 

Minterm Cube
0,1 0 0 0 - 
0,2 0 0 - 0 
0,8 - 0 0 0 
1,3 0 0 - 1 
1,5 0 - 0 1
2,3 0 0 1 - 

2,10 - 0 1 0 
8,10 1 0 - 0 
3,11 - 0 1 1 
5,13 - 1 0 1

10,11 1 0 1 - 
11,15 1 - 1 1
13,15 1 1 - 1

Minterm Cube
0,1,2,3 0 0 - -

0,8,2,10 - 0 - 0
2,3,10,11 - 0 1 -

STEP 1 - EXAMPLE

f on = {m0, m1, m2, m3, m5, m8, m10, m11, m13, m15} =  (0, 1, 2, 3, 5, 8, 10, 11, 13, 15)

Minterm Cube
0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
8 1 0 0 0 
3 0 0 1 1 
5 0 1 0 1 

10 1 0 1 0 
11 1 0 1 1 
13 1 1 0 1 
15 1 1 1 1 

Minterm Cube
0,1 0 0 0 - 
0,2 0 0 - 0 
0,8 - 0 0 0 
1,3 0 0 - 1 
1,5 0 - 0 1 PI=D
2,3 0 0 1 - 

2,10 - 0 1 0 
8,10 1 0 - 0 
3,11 - 0 1 1 
5,13 - 1 0 1 PI=E
10,11 1 0 1 - 
11,15 1 - 1 1 PI=F
13,15 1 1 - 1 PI=G

Minterm Cube
0,1,2,3 0 0 - - PI=A

0,8,2,10 - 0 - 0 PI=C
2,3,10,11 - 0 1 - PI=B

f on = {A,B,C,D,E,F,G} = {00--, -01-, -0-0, 0-01, -101, 1-11, 11-1}

STEP 2 – Construct Cover Table

• PIs Along Vertical Axis (in order of # of literals)
• Minterms Along Horizontal Axis

 0 1 2 3 5 8 10 11 13 15
A x x x x
B x x x x
C x x x x
D x x
E x x
F x x
G x x

NOTE: Table 4.2 in book is incomplete

STEP 2 – Finding the Minimum Cover
• Extract All Essential Prime Implicants, EPI
• EPIs are the PI for which a Single x Appears in a Column

 0 1 2 3 5 8 10 11 13 15
A x x x x
B x x x x
C x x x x
D x x
E x x
F x x
G x x

• C is an EPI so: f on={C, ...}

• Row C and Columns 0, 2, 8, and 10 can be Eliminated Giving Reduced
Cover Table

• Examine Reduced Table for New EPIs

STEP 2 – Reduced Table

 0 1 2 3 5 8 10 11 13 15
A x x x x
B x x x x
C x x x x
D x x
E x x
F x x
G x x

 1 3 5 11 13 15
A x x
B x x
D x x
E x x
F x x
G x x

Essential row

Distinguished Column

•The Row of an EPI is an Essential row

•The Column of the Single x in the
Essential Row is a Distinguished Column

Row and Column DominanceRow and Column Dominance
• If Row P has x’s Everywhere Row Q Does

Then Q Dominates P if P has fewer x’s

• If Column i has x’s Everywhere j Does
Then j Dominates i if i has fewer x’s

• If Row P is equal to Row Q and Row Q does not cost more than Row P,
eliminate Row P, or if Row P is dominated by Row Q and Row Q Does
not cost more than Row P, eliminate Row P

• If Column i is equal to Column j, eliminate Column i or if Column i
dominates Column j, eliminate Column i

STEP 3 – The Reduced Cover Table
• Initially, Columns 0, 2, 8 and 10 Removed

 1 3 5 11 13 15
A x x
B x x
D x x
E x x
F x x
G x x

• No EPIs are Present
• No Row Dominance Exists
• No Column Dominance Exists
• This is Cyclic Cover Table
• Must Solve Exactly OR Use a Heuristic

NAND Function Implementation

• NAND gates can implement a simplified Sum-
ofProducts form. Constructing two level
NAND-NAND gate circuits

The first level is two 2-input NAND gates using ANDInvert. The second level is one 2-
input NAND gate using Invert-OR. Using the NAND relationship, we

Logic Family Characteristics

• Complementary metal oxide semiconductor
(CMOS)
– most widely used family for large-scale devices
– combines high speed with low power consumption
– usually operates from a single supply of 5 – 15 V
– excellent noise immunity of about 30% of supply voltage
– can be connected to a large number of gates (about 50)
– many forms – some with tPD down to 1 ns
– power consumption depends on speed (perhaps 1 mW)

NAND Implementation (Cont.)

In the implementation, note that the bubbles
are on opposite ends of the same line. Thus,
they can be combined and deleted:

This form of the implementation is the Sum-of-Products
form.

NOR Gates

The basic positive logic NOR gate (Not-OR) is
denoted by the following symbol:

This is called the OR-Invert, since it is logically an OR function followed
by an invert. By DeMorgan's Law we have the following Invert-AND
symbol for a NOR gate:

General Implementations (Cont.)
Given a two level implementation desired, use the previous transfromations

to get it into one of the below forms. Then follow the steps to transform
the function to the desired form:

Multi-level NAND Implementations

• Add inverters in two-level implementation
into the cost picture

• Attempt to “combine” inverters to reduce the
term count

• Attempt to reduce literal + tem count by
factoring expression into POSOP or SOPOS

• Transistor-transistor logic (TTL)
– based on bipolar transistors
– one of the most widely used families for small- and

medium-scale devices – rarely used for VLSI
– typically operated from 5V supply
– typical noise immunity about 1 – 1.6 V
– many forms, some optimised for speed, power, etc.
– high speed versions comparable to CMOS (~ 1.5 ns)
– low-power versions down to about 1 mW/gate

• Emitter-coupled logic (ECL)
– based on bipolar transistors, but removes

problems of storage time by preventing the
transistors from saturating

– very fast operation - propagation delays of 1ns or
less

– high power consumption, perhaps 60 mW/gate
– low noise immunity of about 0.2-0.25 V
– used in some high speed specialist applications,

but now largely replaced by high speed CMOS

A Comparison of Logic Families

Parameter CMOS TTL ECL

Basic gate NAND/NOR NAND OR/NOR

Fan-out >50 10 25

Power per gate (mW) 1 @ 1 MHz 1 - 22 4 - 55

Noise immunity Excellent Very good Good

tPD (ns) 1 - 200 1.5 – 33 1 - 4

Complementary Metal Oxide Semiconductor

• A CMOS inverter

• CMOS gates

• CMOS logic levels and noise immunity

Transistor-Transistor Logic

• Discrete TTL inverter and NAND gate circuits

• A basic integrated circuit TTL NAND gate

• A standard TTL NAND gate

• A TTL NAND gate with open collector output

119

Combinational Logic

• Logic circuits for digital systems may be combinational
or sequential.

• A combinational circuit consists of input variables, logic
gates, and output variables.

120

Analysis procedure
To obtain the output Boolean functions from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary
symbols. Determine the Boolean functions for each gate output.

2. Label the gates that are a function of input variables and previously labeled
gates with other arbitrary symbols. Find the Boolean functions for these
gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are
obtained.

4. By repeated substitution of previously defined functions, obtain the output
Boolean functions in terms of input variables.

121

Example
F2 = AB + AC + BC; T1 = A + B + C; T2 = ABC; T3 = F2’T1;
F1 = T3 + T2

F1 = T3 + T2 = F2’T1 + ABC = A’BC’ + A’B’C + AB’C’ + ABC

122

Derive truth table from logic diagram

• We can derive the truth table in Table 4-1 by using the
circuit of Fig.4-2.

123

Design procedure
1. Table4-2 is a Code-Conversion example, first, we can

list the relation of the BCD and Excess-3 codes in the
truth table.

124

Karnaugh map
2. For each symbol of the Excess-3 code, we use 1’s to

draw the map for simplifying Boolean function.

125

Circuit implementation
z = D’; y = CD + C’D’ = CD + (C + D)’
x = B’C + B’D + BC’D’ = B’(C + D) + B(C + D)’
w = A + BC + BD = A + B(C + D)

126

Binary Adder-Subtractor
• A combinational circuit that performs the addition of two bits is

called a half adder.
• The truth table for the half adder is listed below:

S = x’y + xy’
C = xy

S: Sum
C: Carry

127

Implementation of Half-Adder

128

Full-Adder
• One that performs the addition of three bits(two

significant bits and a previous carry) is a full adder.

129

Simplified Expressions

S = x’y’z + x’yz’ + xy’z’ + xyz
C = xy + xz + yz

C

130

Full adder implemented in SOP

131

Another implementation
• Full-adder can also implemented with two half adders

and one OR gate (Carry Look-Ahead adder).
S = z ⊕ (x ⊕ y)

= z’(xy’ + x’y) + z(xy’ + x’y)’
= xy’z’ + x’yz’ + xyz + x’y’z

C = z(xy’ + x’y) + xy = xy’z + x’yz + xy

Half Subtractor
Truth table

Logic Circuit

Full Subtractor

Full Subtractor

135

Binary adder
• This is also called

Ripple Carry
Adder ,because of the
construction with full
adders are connected
in cascade.

136

Carry Propagation

• Fig.4-9 causes a unstable factor on carry bit, and produces a
longest propagation delay.

• The signal from Ci to the output carry Ci+1, propagates through an
AND and OR gates, so, for an n-bit RCA, there are 2n gate levels
for the carry to propagate from input to output.

137

Carry Propagation

• Because the propagation delay will affect the output signals on
different time, so the signals are given enough time to get the
precise and stable outputs.

• The most widely used technique employs the principle of carry
look-ahead to improve the speed of the algorithm.

138

Boolean functions
Pi = Ai ⊕ Bi steady state value
Gi = AiBi steady state value

Output sum and carry
Si = Pi ⊕ Ci

Ci+1 = Gi + PiCi

Gi : carry generate Pi : carry propagate
C0 = input carry
C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

• C3 does not have to wait for C2 and C1 to propagate.

139

Logic diagram of
carry look-ahead generator

• C3 is propagated at the same time as C2 and C1.

140

4-bit adder with carry lookahead

• Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

141

Binary subtractor
M = 1subtractor ; M = 0adder

142

4-5 Decimal adder
BCD adder can’t exceed 9 on each input digit. K is the carry.

143

Rules of BCD adder
• When the binary sum is greater than 1001, we obtain a non-valid

BCD representation.

• The addition of binary 6(0110) to the binary sum converts it to
the correct BCD representation and also produces an output carry
as required.

• To distinguish them from binary 1000 and 1001, which also have a
1 in position Z8, we specify further that either Z4 or Z2 must have a
1.

C = K + Z8Z4 + Z8Z2

144

Implementation of BCD adder
• A decimal parallel

adder that adds n
decimal digits needs n
BCD adder stages.

• The output carry from
one stage must be
connected to the
input carry of the next
higher-order stage.

If =1

0110

145

4-6. Binary multiplier
• Usually there are more bits in the partial products and it is necessary to use full

adders to produce the sum of the partial products.

And

146

4-bit by 3-bit binary multiplier

• For J multiplier bits and K
multiplicand bits we need (J
X K) AND gates and (J − 1) K-
bit adders to produce a
product of J+K bits.

• K=4 and J=3, we need 12
AND gates and two 4-bit
adders.

147

Magnitude comparator
• The equality relation of each pair

of bits can be expressed logically
with an exclusive-NOR function as:

A = A3A2A1A0 ; B = B3B2B1B0

xi=AiBi+Ai’Bi’ for i = 0, 1, 2, 3

(A = B) = x3x2x1x0

148

Magnitude comparator
• We inspect the relative magnitudes

of pairs of MSB. If equal, we
compare the next lower significant
pair of digits until a pair of unequal
digits is reached.

• If the corresponding digit of A is 1
and that of B is 0, we conclude that
A>B.

(A>B)=
A3B’3+x3A2B’2+x3x2A1B’1+x3x2x1A0B’0
(A<B)=
A’3B3+x3A’2B2+x3x2A’1B1+x3x2x1A’0B0

149

Decoders

• The decoder is called n-to-m-line decoder, where
m≤2n .

• the decoder is also used in conjunction with other
code converters such as a BCD-to-seven_segment
decoder.

• 3-to-8 line decoder: For each possible input
combination, there are seven outputs that are equal
to 0 and only one that is equal to 1.

150

Implementation and truth table

151

Decoder with enable input
• Some decoders are constructed with NAND gates, it becomes

more economical to generate the decoder minterms in their
complemented form.

• As indicated by the truth table , only one output can be equal to 0
at any given time, all other outputs are equal to 1.

152

Demultiplexer
• A decoder with an enable input is referred to as a

decoder/demultiplexer.
• The truth table of demultiplexer is the same with

decoder.

Demultiplexer

D0

D1

D2

D3

E

A B

153

3-to-8 decoder with enable implement the
4-to-16 decoder

154

Implementation of a Full Adder with a
Decoder

• From table 4-4, we obtain the functions for the combinational circuit in sum of
minterms:

S(x, y, z) = ∑(1, 2, 4, 7)
C(x, y, z) = ∑(3, 5, 6, 7)

155

4-9. Encoders
• An encoder is the inverse operation of a decoder.
• We can derive the Boolean functions by table 4-7

z = D1 + D3 + D5 + D7

y = D2 + D3 + D6 + D7

x = D4 + D5 + D6 + D7

156

Priority encoder

• If two inputs are active simultaneously, the output produces
an undefined combination. We can establish an input priority
to ensure that only one input is encoded.

• Another ambiguity in the octal-to-binary encoder is that an
output with all 0’s is generated when all the inputs are 0; the
output is the same as when D0 is equal to 1.

• The discrepancy tables on Table 4-7 and Table 4-8 can resolve
aforesaid condition by providing one more output to indicate
that at least one input is equal to 1.

157

Priority encoder
V=0no valid inputs
V=1valid inputs

X’s in output columns represent
don’t-care conditions
X’s in the input columns are
useful for representing a truth
table in condensed form.
Instead of listing all 16
minterms of four variables.

158

4-input priority encoder

• Implementation of
table 4-8

x = D2 + D3

y = D3 + D1D’2
V = D0 + D1 + D2 + D3

0

0
0

0

159

4-10. Multiplexers

S = 0, Y = I0 Truth Table S Y Y = S’I0 + SI1

S = 1, Y = I1 0 I0

1 I1

160

4-to-1 Line Multiplexer

161

Quadruple 2-to-1 Line Multiplexer
• Multiplexer circuits can be combined with common selection inputs to provide

multiple-bit selection logic. Compare with Fig4-24.

I0

I1

Y

162

Boolean function implementation

• A more efficient method for implementing a Boolean function of
n variables with a multiplexer that has n-1 selection inputs.

F(x, y, z) = (1,2,6,7)

163

4-input function with a multiplexer

F(A, B, C, D) = (1, 3, 4, 11, 12, 13, 14, 15)

164

Three-State Gates
• A multiplexer can be constructed with three-state gates.

165

Sequential Circuits

• A sequential circuit is one whose outputs depend not
only on its current inputs, but also on the past
sequence of inputs.

• In other words, sequential circuits must be able to
”remember” (i.e., store) the past history of the inputs
in order to produce the present output.

• The information about the previous inputs history is
called the state of the system.

• A circuit that uses n binary state variables to store its
past history can take up to 2n different states.

• Since n is always finite, sequential circuits are also
called finite state machines (FSM).

166

In short, sequential circuits are …

• circuits consisting of ordinary gates and
feedback loops

X1
X2
•
•
•

Xn

switching
network

Z1
Z2
•
•
•

Zn

167

"remember"

"load"
"data" "stored value"

"0"

"1"

"stored value"

The simplest sequential circuit

• Two inverters and a feedback loop form a “static” storage
cell
– The cell will hold value as long as it has power applied

• How to get a new value into the storage cell?
– selectively break feedback path
– load new value into cell D latch

(= state)
bistable cell

168

Latches and Flip-Flops

• The two most popular varieties of storage cells used to
build sequential circuits are: latches and flip-flops.
– Latch: level sensitive storage element
– Flip-Flop: edge triggered storage element

• Common examples of latches:
S-R latch, \S-\R latch, D latch (= gated D latch)

• Common examples of flip-flops:
D-FF, D-FF with enable, Scan-FF, JK-FF, T-FF

169

S-R (Set-Reset) Latch

S-R latch: similar to inverter pair, with capability to force output to 0 (reset=1) or 1
(set=1)

R
S

Q

X Y NOR
0 0 1
0 1 0
1 0 0
1 1 0

QN

170

S-R latch operation

S
R

QN

Q
0
0

0=

=1

S
R

QN

Q
1
0

0=

=0

=1
0=

S
R

QN

Q
0
0 =1

=0

=1

S
R

QN

Q
0
1 =1

=1

=0

171

S-R latch operation (cont’d)

Both Q and QN are 0 at the same time

Race

(hold)
(reset)
(set)
(forbidden)

172

Improper S-R latch operation

Reset Hold Set SetReset Race

R

S

Q

QN

QN Theoretically the circuit
starts to oscillate

173

S(t) R(t) Q(t) Q(t+)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

hold

reset

set

not allowed

next state equation:
Q(t+) = S(t) + R’(t) Q(t)

R-S latch analysis

• Break feedback path

R

S

Q

QN

Q(t+)

R(t)
S(t)

Q(t)

0 0

1 0

X 1

X 1Q(t)

R(t)

S(t)

Q+ = Q* = S + R’ Q
a.k.a. characteristic equation

174

S-R Latch

RN
SN

Q(t)

X 1

X 1

0 0

1 0Q(t)

RN(t)

SN(t)

SN(t) RN(t) Q(t) Q(t+)
1 1 0 0
1 1 1 1
1 0 0 0
1 0 1 0
0 1 0 1
0 1 1 1
0 0 0 X
0 0 1 X

hold

reset

set

not allowed

next state equation:
Q(t+) = S’(t) + R(t) Q(t)

Q+ = Q* = S’ + R Q

175

D Latch (= Transparent Latch)

=

176

D-Latch Timing Parameters

• The D Latch eliminates the S=R=1 problem of the SR latch
• However, violations of setup and hold time still cause metastability

177

Clock signals

• Clocks are regular periodic signals used to specify state changes

178

D Flip-Flop (positive edge
triggered)

Notice: the little triangle !

Functional Table Truth Table
More compact

Truth Table

D Q+

0 0
1 1

Next state equation:

CLK

D

Q

inputs sampled on rising edge; outputs change after rising edge

179

Setup and hold times for an
edge-triggered DFF

180

Minimum clock period T ?

Example with T = 9 ns

tpINV = 2 ns
tpFF = 5 ns
tsuFF = 3 ns

Example with T = 15 ns

T = 9 ns T = 15 ns

181

Minimum clock period T ? (cont’d)

tpINV = 2 ns
tpFF = 5 ns
tsuFF = 3 ns

Tmin = 10 ns

Observation:
thFF doesn’t affect this calculation

182

D Flip-Flop (negative edge
triggered)

inputs sampled on falling edge; outputs change after falling edge

183

DFF with asynchronous preset
and clear

184

DFF with asynchronous preset
and clear (cont’d)

185

DFF with enable

D

CK

0
1 Q

Q’

D
EN

CLK

Reliable alternative

186

DFF with enable (cont’d)

187

JK Flip Flop (rising edge triggered)

=

Functional Table Truth Table More Compact
Truth Table

J K Q+

0 0 Q
0 1 0
1 0 1
1 1 Q’

Next state equation:

188

Summary of latches and flip flops

189

behavior is the same unless input changes
while the clock is high

D Q

CLK

positive
edge-triggered

flip-flop

D Q
G

CLK

transparent
(level-sensitive)

latch

D

CLK

QFF

Qlatch

Comparison of latches and flip-
flops

QFF

Qlatch

190

Synchronous Sequential Circuit Analysis

191

Synchronous Sequential Circuit
• State Memory – A set of n edge-triggered flip-flops that

store the current state of the machine
– All flip-flops are triggered from the same master clock signal
– All change state together

• Combinational circuit
– Next state logic
– Output logic – Mealy and Moore

Combinational
circuit

Inputs

State Memory

Outputs

Clock

Current
State

Next
State

192

Mealy Model

next state = F (current state, inputs)

outputs = G (current state, inputs)

193

Moore Model

next state = F (current state, inputs)

outputs = G (current state)

194

Analysis - Goals
• Characterize as Mealy or Moore machine
• Determine next state equations, i.e., find the function F

– next state = F (current state, inputs)
• Determine output equations

– Meally: outputs = F (current state, inputs), or
– Moore: outputs = F (current state)

• Express as machine behavior
– State table, or
– State diagram

• Formulate English description of machine behavior

195

An example sequential circuit

• A sequential circuit with two JK flip-flops

• State or memory: Q1Q0

• One input: X; One output: Z

196

State table of example circuit

Present State Inputs Next State Outputs
Q1 Q0 X Q1 Q0 Z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

197

Output Equations
• From the diagram, you can see that

Z = Q1Q0X

Mealy model circuit !!!

Present State Inputs Next State Outputs
Q1 Q0 X Q1 Q0 Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

198

Next State Equations – Q(t+1)
• Find the flip-flop input equations/excitation equations
• Substitute excitation equations in the flip-flop’s characteristic equation

J1 = X’ Q0

K1 = X + Q0

J0 = X + Q1

K0 = X’

199

Next State Equations – Q(t+1)

• Next state equations:

– Q1(t+1) = K1’Q1(t) + J1Q1’(t)
= (X + Q0(t))’ Q1(t) + X’ Q0 (t) Q1’(t)
= X’ (Q0(t)’ Q1(t) + Q0(t) Q1(t)’)
= X’ (Q0(t)  Q1(t))

– Q0(t+1) = K0’Q0(t) + J0Q0’(t)
= X Q0(t) + (X + Q1(t)) Q0’(t)
= X + Q0(t)’ Q1(t)

• Excitation equations:
– J1 = X’ Q0 and K1 = X + Q0

– J0 = X + Q1 and K0 = X’

• Characteristic equation of the JK flip-flop:
– Q(t+1) = K’Q(t) + JQ’(t)

200

State Table & Next State Equations• Q1(t+1) = X’ (Q0(t)  Q1(t))

– Q1=0, Q0=0, X= 0 => Q1(t+1)= 0

• Q0(t+1) = X + Q0(t)’ Q1(t)

– Q1=0, Q0=0, X= 0 => Q0(t+1)= 0

Present State Inputs Next State Outputs
Q1 Q0 X Q1 Q0 Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

0 0

201

State Table & Next State Equations• Q1(t+1) = X’ (Q0(t)  Q1(t))

– Q1=0, Q0=1, X= 1 => Q1(t+1)= 0

• Q0(t+1) = X + Q0(t)’ Q1(t)

– Q1=0, Q0=1, X= 1 => Q0(t+1)= 1

Present State Inputs Next State Outputs
Q1 Q0 X Q1 Q0 Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

0 0

0 1

202

State Table & Next State Equations
• Q1(t+1) = X’ (Q0(t)  Q1(t))

• Q0(t+1) = X + Q0(t)’ Q1(t)

Present State Inputs Next State Outputs
Q 1 Q0 X Q1 Q0 Z
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 0 0
1 1 1 0 1 1

203

State Table & Characteristic Table
• The general JK flip-flop characteristic equation is:

Q(t+1) = K’Q(t) + JQ’(t)
• We can also determine the next state for each input/current

state combination directly from the characteristic table

J K Q(t+1) Operation
0 0 Q(t) No change
0 1 0 Reset
1 0 1 Set
1 1 Q’(t) Complement

204

State Table & Characteristic Table• With these equations, we can make a table
showing J1, K1, J0 and K0

for the different combinations of present state
Q1Q0 and input X

J1 = X’ Q0 J0 = X + Q1

K1 = X + Q0 K0 = X’
Present State Inputs Flip-flop Inputs
Q1 Q0 X J1 K1 J0 K0

0 0 0 0 0 0 1
0 0 1 0 1 1 0
0 1 0 1 1 0 1
0 1 1 0 1 1 0
1 0 0 0 0 1 1
1 0 1 0 1 1 0
1 1 0 1 1 1 1
1 1 1 0 1 1 0

205

State Table & Characteristic Table

Present State Inputs FF Inputs Next State
Q1 Q0 X J1 K1 J0 K0 Q1 Q0
0 0 0 0 0 0 1
0 0 1 0 1 1 0
0 1 0 1 1 0 1 1
0 1 1 0 1 1 0
1 0 0 0 0 1 1
1 0 1 0 1 1 0
1 1 0 1 1 1 1
1 1 1 0 1 1 0

J K Q(t+1)
0 0 Q(t)
0 1 0
1 0 1
1 1 Q’(t)

206

State Table & Characteristic Table

Present State Inputs FF Inputs Next State
Q1 Q0 X J1 K1 J0 K0 Q1 Q0
0 0 0 0 0 0 1
0 0 1 0 1 1 0
0 1 0 1 1 0 1 1
0 1 1 0 1 1 0
1 0 0 0 0 1 1
1 0 1 0 1 1 0
1 1 0 1 1 1 1
1 1 1 0 1 1 0

J K Q(t+1)
0 0 Q(t)
0 1 0
1 0 1
1 1 Q’(t)

0

207

A different look
Present State Inputs Next State Outputs

Q 1 Q0 X Q1 Q0 Z
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 0 0
1 1 1 0 1 1

Present State
Q1 Q0

Next State
Output

Z
Input
X= 0

Input
X= 1

X= 0 X= 1

0 0 0 0 0 1 0 0
0 1 1 0 0 1 0 0
1 0 1 1 0 1 0 0
1 1 0 0 0 1 0 1

208

State diagrams (Mealy model)

Present State Inputs Next State Outputs
Q1 Q0 X Q1 Q0 Z
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 0 0
1 1 1 0 1 1

• We can also represent the state table graphically with a state diagram
• A diagram corresponding to our example state table is shown below

00 01

1011

1/0

0/00/0

0/0

0/0 1/0

1/0
1/1

input output

state

209

Sizes of state diagrams

00 01

1011

1/0

0/00/0

0/0

0/0 1/0

1/0
1/1

• Always check the size of your state diagrams
– If there are n flip-flops, there should be 2n nodes in the diagram
– If there are m inputs, then each node will have 2m outgoing arrows

• In our example,
– We have two flip-flops, and thus four states or nodes.
– There is one input, so each node has two outgoing arrows.

210

Another Mealy Circuit

211

Excitation Equations

•• DD00 = EN’ = EN’ QQ00 ++ EN EN QQ00’’

•• DD11 = EN’ = EN’ QQ11 + EN + EN QQ11’ ’ QQ00 + EN + EN QQ11 QQ00’’

212

Next State/Output Equations

•• QQ00(t+1) = D(t+1) = D00 = EN’ = EN’ QQ00 ++ EN EN QQ00’’

•• QQ11(t+1) = D(t+1) = D11 = EN’ = EN’ QQ11 + EN + EN QQ11’ ’ QQ00 + EN + EN QQ11 QQ00’’

•• MAX= EN MAX= EN QQ11 QQ00

213

Mealy State Table

Present State
Q1 Q0

Next State
Output
MAX

Input
EN= 0

Input
EN= 1

X= 0 X= 1

0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0
1 0 1 0 1 1 0 0
1 1 1 1 0 0 0 1

•• QQ00(t+1) = D(t+1) = D00 = EN’ = EN’ QQ00 ++ EN EN QQ00’’

•• QQ11(t+1) = D(t+1) = D11 = EN’ = EN’ QQ11 + EN + EN QQ11’ ’ QQ00 + EN + EN QQ11 QQ00’’

•• MAX= EN MAX= EN QQ11 QQ00

214

Mealy State Diagram

Present State
Q1 Q0

Next State
Output
MAX

Input
EN= 0

Input
EN= 1

X= 0 X= 1

0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0
1 0 1 0 1 1 0 0
1 1 1 1 0 0 0 1

215

Moore Circuit
X

Remove input
connection to

output logic =>
Moore machine

216

Next State/Output Equations

•• QQ00(t+1) = D(t+1) = D00 = EN’ = EN’ QQ00 ++ EN EN QQ00’’

•• QQ11(t+1) = D(t+1) = D11 = EN’ = EN’ QQ11 + EN + EN QQ11’ ’ QQ00 + EN + EN QQ11 QQ00’’

•• MAX= MAX= QQ11 QQ00

X

217

Moore State Table

Present State
Q1 Q0

Next State
Output
MAXInput

EN= 0
Input
EN= 1

0 0 0 0 0 1 0
0 1 0 1 1 0 0
1 0 1 0 1 1 0
1 1 1 1 0 0 1

•• QQ00(t+1) = D(t+1) = D00 = EN’ = EN’ QQ00 ++ EN EN QQ00’’

•• QQ11(t+1) = D(t+1) = D11 = EN’ = EN’ QQ11 + EN + EN QQ11’ ’ QQ00 + EN + EN QQ11 QQ00’’

•• MAX= MAX= QQ11 QQ00

218

Moore State Diagram

Present State
Q1 Q0

Next State
Output
MAX

Input
EN= 0

Input
EN= 1

X= 0 X= 1

0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0
1 0 1 0 1 1 0 0
1 1 1 1 0 0 0 1

219

State Transitions

• MAX : Output of the Mealy circuit
• MAXS : Output of the Moore circuit

Shift register
Circuit for simple shift register

Basic applications

Ring counters

Johnson counters

Pseudo-random binary sequences and encryption
Ready-made shift registers are available as integrated circuits,
such as the ’165

Conversion of data from serial to parallel and vice versa
Large-scale devices such as ‘universal asynchronous receiver
transmitters’ (UARTs) are based on shift registers

Same functions available in microcontrollers (‘shift’ and ‘rotate’
instructions)

Basic shift register
A basic shift register is simply a chain of D flip-flops with a common clock.

D Q D Q D Q D Qserial
input

serial
output

clock

Each flip-flop transfers its D input to its Q output at a clock transition.
• The effect is to transfer data along the register, one flip-flop per clock

cycle.

This type of register is called a serial input-serial output (SISO).

A B C D

Basic shift register
A basic shift register is simply a chain of D flip-flops with a common clock.

D Q D Q D Q D Qserial input
01001110

serial
output

clock

The table shows the contents of the
register after successive clock transitions.
The assumption is that the register is
initially clear.
• The number of clock pulses needed to

fill the register is equal to the number of
flip-flops used to make the register.

• This is a 4 bit register.

A B C D

cl
oc

k
pu

ls
es

0 0 1 0 0

input QA QB QC QD

0 0 0 0 0

1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
0 0 1 1 1
0 0 0 1 1
1 1 0 0 1

Timing for a shift register

clock

input

QA

QB

QC

QD

The pattern in successive flip-flops moves to the right with each clock
cycle to shift the pattern into and out of the register.

tpd

Timing for a shift register

clock

input

QA

QB

QC

QD tpd

input QA QB QC

0 0 0 0
1
1
1

1
1
1

0
1
1

0
0
1

QD

0 0 1 1 1

0
0
0
0

Applications of a basic shift register
1. Delay line — N stages delay the signal by N clock cycles

2. Multiplication and division by powers of 2, because this just requires a
shift of the binary number (like multiplication or division by 10 in decimal)

Example: decimal 3 x 4 = 12 becomes 11 x 100 = 1100 in binary The

arithmetic logic unit (ALU) of a computer processor uses a shift

register for this purpose.

Warning: the ‘sense’ of a shift — left or right — is usually based on its
effect on binary numbers written in the usual way. For example,
11 → 1100 is called a left shift. This is clearer if both numbers are
written with 8-bits as 00000011 → 00001100. Similarly, dividing by 2
such as 00010110 → 00001011 is a right shift.
This is the opposite of what we usually draw in a counter circuit, with
the least significant bit (LSB) on the left. Take care!

There is a ‘rotate’ operation where the output from the shift register is fed
back to the beginning, usually through the ‘carry bit’.

Ring counter
A shift register with its output fed back to its input forms a ring counter.

clock A B C D

D Q D Q D Q D Q

It is much harder to multiply a given frequency to obtain a higher frequency signal.
A phase locked loop (PLL) is often used.

This can be used to generate an arbitrary binary pattern of length N, where
N is the number of stages in the ring counter. It must be preloaded with the
sequence desired, which then rotates around the counter indefinitely.

One application is to divide down the clock frequency for a slower part of a
digital system, while keeping everything synchronous. Modern computers
have several ‘buses’ running at different speeds, where a ring counter is
used to create the clocks for the various buses.

output

Johnson counter
A ring counter with the complement of its output fed back is a Johnson
counter.

clock A B C D

This generates longer sequences than a simple ring counter.

For example, a ring counter with 3 stages produces a cycle of 3
states — a waste as there are 23 = 8 states in all.

A Johnson counter with 3 stages has a cycle of 6 and a separate cycle
of 2. It is important to ensure that it follows the correct one!

D Q D Q D Q D Q output

Johnson counter
A ring counter with the complement of its output fed back is a Johnson
counter.

clock A B C D

D Q D Q D Q D Q output

QA QB QC

0
1
1
1
0
0

0 1 0

0
0
1
1
1
0

0
0
0
1
1
1

0 11

Pseudo-random number generator

• Pseudo-random sequences of 1s and 0s have many applications, notably in encryption. They
appear to be random over ‘short’ times but the sequence eventually repeats, hence the more accurate
term ‘pseudo-random’.

• Also, they can be reproduced perfectly if you know both:

• the method used to generate the sequence

• the state in the sequence at which to start

• This is an important feature! — see next sheet.

• The circuit above has a period of 24 – 1 = 15
• (the missing state is 0000 —why?).

D Q D Q D Q D Q output

A ring counter with feedback through an exclusive-or gate makes a simple
pseudo-random number generator.

Pseudo-random binary sequences and encryption

transmit data over
insecure link

sender

receiver

exclusive or

looks like binary
‘noise’ —
apparently random

?

your data (plain text) pseudo-random binary sequence

Pseudo-random binary sequences and encryption

transmit data over
insecure link

sender

receiver

exclusive or

looks like binary
‘noise’ —
apparently random

?

your data (plain text) pseudo-random binary sequence

your data in plain text again

exclusive or

same pseudo-random binary sequence

if you exclusive-or a bit
with the same value (0 or
1) twice, you get the
initial value back again.

Pseudo-random binary sequences and encryption

transmit data over
insecure link

sender

receiver

exclusive or

looks like binary
‘noise’ —
apparently random

?

your data (plain text) pseudo-random binary sequence

your data in plain text again

exclusive or

same pseudo-random binary sequence

if you exclusive-or a bit
with the same value (0 or
1) twice, you get the
initial value back again.

How do we ensure
that both sender
and receiver use
the same pseudo-
random binary
sequence?

(https) or with a digital mobile phone.
This is the basis of the method used to encrypt data sent over the internet

Transmission of data — serial format
Data often has to be transmitted from one computer to another, or from a
computer to peripheral equipment (printer, modem, …). This can be done in:

• serial format, one bit at a time
• parallel format, several bits at a time (e.g. byte at a time, 8 bits)

Serial format is most commonly used because it is simpler. Only a few wires
are needed:

• traditional serial ‘COM’ ports (RS-232) need only 3 wires (transmitted
data, received data and ground — but more may be used for control)

• universal serial bus (USB, common on modern computers) uses 4
wires (two for differential data plus power and ground)

Traditional serial transmission was slow but modern systems use much
faster rates (USB version 1 up to 12 Mbits per second, FireWire 1 up to
400 Mbits per second), version 2 of both even faster.

1 0 0 1 1 0 1 1 0 1 0 1bit stream
simple serial

Parallel data
Where higher speed is required, several bits (usually a small number of
bytes, each of 8 bits) may be moved at once. More complicated connections
are needed — more wires. Common applications include:

• inside the processor itself, e.g. our microcontroller handles bytes
• inside a computer system on the bus (e.g. PCI) and interfaces to disk

drives (e.g. e.g. SCSI or IDE)— but these are now mainly serial

Interfaces have changed to serial because it is hard to ensure that all bits on
a parallel bus arrive at the same time at the high speed of modern systems.

Parallel data

a UART (universal asynchronous receiver transmitter) or something similar.

Where higher speed is required, several bits (usually a small number of
bytes, each of 8 bits) may be moved at once. More complicated connections
are needed — more wires. Common applications include:

• inside the processor itself, e.g. our microcontroller handles bytes
• inside a computer system on the bus (e.g. PCI) and interfaces to disk

drives (e.g. e.g. SCSI or IDE)— but these are now mainly serial

Interfaces have changed to serial because it is hard to ensure that all bits on
a parallel bus arrive at the same time at the high speed of modern systems.

How do you interface a serial device to a computer?

How do we interface an external device that transmits serially with the bus of
a computer that transfers one byte (8 bits) at a time?

• Use a shift register.
In practice this would almost certainly be buried inside a larger circuit called

Use of shift register to serialize data

D Q D Q D Q D Q serial
output

A B C D

Extra logic is added to the basic shift register so that all the flip-flops can be loaded
in parallel (simultaneously), controlled by a shift/load input.

Once the data have been loaded, the clock is enabled and the values are shifted
once per clock cycle. This causes the input data to be transferred to the output, one
bit at a time — serial output (PISO).

The opposite process is used to read in serial data, fill up the shift register, and
transfer it in parallel to a bus when the register is full (SIPO).

The register can also be parallel input – parallel output (PIPO).

Shift or rotate instructions can be used for the same process inside a microcontroller
(if it doesn’t have a UART built in, which many do).

parallel data in

parallel load

237

• The data stored in ROM are always there, whether the power
is on or not. A ROM can be removed from the PC, and then
replaced, and the data it contains will still be there.

• Data stored in these chips is unchangeable, provides a
measure of security against accidental or malicious changes to
its contents. Unlike RAM, which can be changed as easily as it
is read

– We will look at five of them to see how they differ in the
way they are programmed, erased, and reprogrammed

ROM

238

Mask ROM
• The mask ROM is usually referred to simply as a

ROM.

• A regular ROM is constructed from hard-wired
logic, encoded in the silicon itself to perform a specific
function that cannot be changed.

• They consume very little power and reliable but cannot
reprogram or rewrite.

• Several types of user programmable ROMs have been
developed to overcome this disadvantage.

239

Programmable ROM (PROM)

• A mask ROM chip is very expensive and time-consuming to
create in small quantities from scratch.

• Mainly, developers created a type of ROM known as
programmable read-only memory (PROM).

• This is basically a blank ROM chip that can be written only
once using special equipment called a PROM programmer.

• PROM chips have a grid of columns and rows just as ordinary
ROMs do.

240

• The difference is that every intersection of a column and row
in a PROM chip has a fuse connecting them.

• Since all the cells have a fuse, the initial (blank) state of a
PROM chip is all 1s.

• The user cans selectively burn/blow any of these fuse links to
produce the desired stored memory data.

• A charge sent through a column will pass through the fuse in a
cell to a grounded row indicating a value of 1.

Programmable ROM (PROM)

241

• To change the value of a cell to 0, you use a PROM
programmer to send a specific amount of current to the cell
to break the connection between the column and row by
burning out the fuse.

• This process is known as burning the PROM.

• Very few bipolar PROMs are still available today.

• TMS27PC256 is a very popular CMOS PROM with a capacity of
32K  8.

Programmable ROM (PROM)

242

Erasable Programmable ROM (EPROM)

• An EPROM is a ROM that can be erased and
reprogrammed as often as desired. Once programmed.

• The EPROM is a non-volatile memory that will hold its stored
data indefinitely.

• A little glass window is provided in the top of the ROM
package.

• Ultraviolet light of a specific frequency can be shined through
this window for a specified period of time, which will erase all
cells at the same time so that an erased EPROM stores all 1s
and allow it to be reprogrammed again.

243

Erasable Programmable ROM (EPROM)

• EPROMs are configured using an EPROM
programmer that provides voltage at specified levels
depending on the type of EPROM used.

• Obviously this is much more useful than a regular
PROM, but it does require the erasing light.

• EPROMs are available in a wide range of capacities
and access times. The 27C64 is an example of 8K x 8
CMOS EPROM

244

Electrically Erasable Programmable ROM (EEPROM)

• They require dedicated equipment and a labor-
intensive process to remove and reinstall them each
time a change is necessary.

• The next type of ROM is the EEPROM, which can be
erased under software control.

• This is the most flexible type of ROM, and is now
commonly used for holding BIOS programs

245

Electrically Erasable Programmable ROM (EEPROM)

• In EEPROMs the chip does not have to be removed
to be rewritten, the entire chip need not be fully
erased to change a specific portion of it, and
changing the contents does not require additional
dedicated equipment.

• Instead of using UV light, you can return the
electrons in the cells of an EEPROM to normal with
the localized application of an electric field to each
cell.

246

Electrically Erasable Programmable ROM (EEPROM)

• This erases the targeted cells of the EEPROM,
which can then be rewritten.

• EEPROMs are changed 1 byte at a time, which
makes them versatile but slow.

• The Intel 2864 is an example of EEPROM with
8K  8 array with 13 address inputs and eight
data I/O pins

247

Flash Memory

• Flash memories are so called because of their rapid
erase and write times.

• EEPROM chips speed is too slow to use in many
products that required quick changes to the data
stored on the chip.

• So a new type of EEPROM called Flash memory that
uses in-circuit wiring to erase by applying an
electrical field to the entire chip or to predetermined
sections of the chip called blocks.

248

Flash Memory

• Flash memory works much faster than
traditional EEPROMs because it writes data in
chunks, usually 512 bytes in size, instead of 1
byte at a time.

• The 28F256A CMOS IC is an example of flash
memory chip, which has a capacity of 32K  8.

The SRAM Memory Cell

• Circuit Schematic:
– 4 NFETs and 2 PFETs: T1 & T2 called active devices; T3

& T4 called the I/O devices; T5 & T6 sometimes called
loads.

– The cell is comprised of two cross-coupled inverters
(positive feedback).

– 2 vertical lines (bit lines B0 & B1) are used for sensing
state of cell and writing data in the cell

– 1 horizontal line (word line WL) is used to select a row
of cells for writing or reading and to prevent the
unselected rows of cells from being disturbed.

• Circuit Operation:
– The cell has two stable states: “0” and “1”

• “0” State = Node X0 high and Node X1 low; T2 & T5 are
ON, T1 & T6 are OFF.

• “1” State = Node X1 high and Node X0 low; T1 & T6 are
ON; T2 & T5 are OFF.

• No dc current flows in either state.
– Write: raise WL to Vdd; pull one bit line high & pull the

other bit line low
– Read: raise WL to Vdd; precharge bit lines to ½ Vdd

Vdd

B1B0

WL

X0 X1

T5 T6

T2T1

T3
T4

SRAM Memory Array Organization
• READ Operation:

– Word Decode circuitry selects one of
n word lines and drives high to Vdd
(say WL2); other word lines held at
gnd.

– Bit Lines all precharged to half Vdd
– Selected cell’s I/O devices turned ON

and apply a V to bit line pair
– Sense amp triggers on bit line V and

stores read data “0” or “1”
• WRITE Operation:

– Selected WL is driven high to Vdd by
word decode circuitry turning ON I/O
devices in selected cells

– Selected bit column has one BL pulled
high to Vdd and the other pulled low
to gnd, thus writing the selected cell.

– Unselected bit columns merely
perform a READ operation.

SRAM
Cell
11

Word
Decode

(Row
Decode)

Sense Amplifiers
and Off-Chip Drivers/Buffers

Bit Decode (Column Decode)
and Write Drivers

SRAM
Cell
12

SRAM
Cell
13

SRAM
Cell
21

SRAM
Cell
22

SRAM
Cell
23

SRAM
Cell
31

SRAM
Cell
32

SRAM
Cell
33

Data Out

Word
Addr

Bit
Addr

Data In

251

Combinational PLDs

• A combinational PLD is an integrated circuit with
programmable gates divided into an AND array and an OR
array to provide an AND-OR sum of product implementation.

• PROM: fixed AND array constructed as a decoder and
programmable OR array.

• PAL: programmable AND array and fixed OR array.

• PLA: both the AND and OR arrays can be programmed.

252

Combinational PLDs

253

Programmable Logic Array
• Fig.7-14, the decoder in PROM is replaced by an array of AND

gates that can be programmed to generate any product term of
the input variables.

• The product terms are then connected to OR gates to provide the
sum of products for the required Boolean functions.

• The output is inverted when the XOR input is connected to 1
(since x⊕1 = x’). The output doesn’t change and connect to 0
(since x⊕0 = x).

254

PLA

F1 = AB’+AC+A’BC’
F2 = (AC+BC)’

255

Programming Table

1. First: lists the product terms numerically

2. Second: specifies the required paths between
inputs and AND gates

3. Third: specifies the paths between the AND and OR
gates

4. For each output variable, we may have a T(ture) or
C(complement) for programming the XOR gate

256

Simplification of PLA

• Careful investigation must be undertaken in order to
reduce the number of distinct product terms, PLA
has a finite number of AND gates.

• Both the true and complement of each function
should be simplified to see which one can be
expressed with fewer product terms and which one
provides product terms that are common to other
functions.

257

Example
Implement the following two Boolean functions with a PLA:

F1(A, B, C) = ∑(0, 1, 2, 4)
F2(A, B, C) = ∑(0, 5, 6, 7)

The two functions are simplified in the maps of Fig.7-15

1 elements

0 elements

258

PLA table by simplifying the function

• Both the true and complement of
the functions are simplified in sum
of products.

• We can find the same terms from
the group terms of the functions of
F1, F1’,F2 and F2’ which will make the
minimum terms.

F1 = (AB + AC + BC)’
F2 = AB + AC + A’B’C’

259

PLA implementation

AB

AC

BC

A’B’C’

260

Programmable Array Logic
• The PAL is a programmable logic device with a fixed OR array and a

programmable AND array.

261

PAL

• When designing with a PAL, the Boolean functions
must be simplified to fit into each section.

• Unlike the PLA, a product term cannot be shared
among two or more OR gates. Therefore, each
function can be simplified by itself without regard to
common product terms.

• The output terminals are sometimes driven by three-
state buffers or inverters.

262

Example
w(A, B, C, D) = ∑(2, 12, 13)
x(A, B, C, D) = ∑(7, 8, 9, 10, 11, 12, 13, 14, 15)
y(A, B, C, D) = ∑(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)
z(A, B, C, D) = ∑(1, 2, 8, 12, 13)

Simplifying the four functions as following Boolean functions:

w = ABC’ + A’B’CD’
x = A + BCD
w = A’B + CD + B’D’
w = ABC’ + A’B’CD’ + AC’D’ + A’B’C’D = w + AC’D’ + A’B’C’D

263

PAL Table
• z has four product terms, and we can replace by w with two

product terms, this will reduce the number of terms for z from
four to three.

264

PAL implementation

A

B

C

D

w

x

y

z

265

Fuse map for example

266

Sequential Programmable Devices

• Sequential programmable devices include both gates
and flip-flops.

• There are several types of sequential programmable
devices, but the internal logic of these devices is too
complex to be shown here.

• We will describe three major types without going
into their detailed construction.

267

Sequential Programmable Devices

1. Sequential (or simple) Programmable Logic Device (SPLD)

2. Complex Programmable Logic Device (CPLD)

3. Field Programmable Gate Array (FPGA)

268

FPLS

• The first programmable device developed to support
sequential circuit implementation is the field-programmable
logic sequencer(FPLS).

• A typical FPLS is organized around a PLA with several outputs
driving flip-flops.

• The flip-flops are flexible in that they can be programmed to
operate as either JK or D type.

• The FPLS did not succeed commercially because it has too
many programmable connections.

269

SPLD

• Each section of an SPLD is called a macrocell.

• A macrocell is a circuit that contains a sum-of-
products combinational logic function and an
optional flip-flop.

• We will assume an AND-OR sum of products but in
practice, it can be any one of the two-level
implementation presented in Sec.3-7.

270

Macrocell
• Fig.7-19 shows the logic of a basic macrocell.
• The AND-OR array is the same as in the combinational PAL shown

in Fig.7-16.

271

CPLD
• A typical SPLD has from 8 to 10 macrocells within one IC package.

All the flip-flops are connected to the common CLK input and all
three-state buffers are controlled by the EO input.

• The design of a digital system using PLD often requires the
connection of several devices to produce the complete
specification. For this type of application, it is more economical to
use a complex programmable logic device (CPLD).

• A CPLD is a collection of individual PLDs on a single integrated
circuit.

272

CPLD
• Fig.7-20 shows a general configuration of a CPLD. It consists of

multiple PLDs interconnected through a programmable switch
matrix. 8 to 16 macrocell per PLD.

273

Gate Array

• The basic component used in VLSI design is the gate
array.

• A gate array consists of a pattern of gates fabricated
in an area of silicon that is repeated thousands of
times until the entire chip is covered with the gates.

• Arrays of one thousand to hundred thousand gates
are fabricated within a single IC chip depending on
the technology used.

274

FPGA

• FPGA is a VLSI circuit that can be programmed in the user’s
location.

• A typical FPGA logic block consists of look-up tables,
multiplexers, gates, and flip-flops.

• Look-up table is a truth table stored in a SRAM and provides
the combinational circuit functions for the logic block.

275

Differential of RAM and ROM in FPGA

• The advantage of using RAM instead of ROM to store the
truth table is that the table can be programmed by writing
into memory.

• The disadvantage is that the memory is volatile and presents
the need for the look-up table content to be reloaded in the
event that power is disrupted.

Algorithmic State
Machines

Introduction

Digital system is specified by the
following three components:

• The set of registers in the system
• The operations that are performed on the

data stored in the registers.
• The control that supervises the sequences

of operations in the system.

Control and Datapath Interaction

Datapath

• Binary information in digital systems classified as either data or control.

• Data – bits of information manipulated by performing arithmetic and logic
operations.

• Hardware components realizing above operations are adders, decoders,
multiplexers, counters e.t.c

Control Path

• Command signals used to supervise execution of algorithms by datapath.

• Bi-directional communication with datapath through status conditions used
to determine the sequence of control signals.

• Control logic inherently sequential.

• Control logic is usually implemented using FSMs

• Often we have to implement an algorithm in hardware instead of software

• Algorithm is a well defined procedure consisting of a finite number of steps
to the solution of a problem.

• It is often hard to translate the algorithm into an FSM.

• ASMs can serve as stand-alone sequential network model.

Algorithm Implementation

Algorithmic State Machine
•Used to graphically describe the operations of an FSM more concisely

•Resembles conventional flowcharts – differs in

interpretation.

•Conventional flowchart – sequential way of

representing procedural steps and decision paths

for algorithm

-No time relations incorporated

•ASM chart – representation of sequence of

events together with timing relations between

states of sequential controller and events

occurring while moving between steps

ASM Chart
•Three basic elements: state box, decision

box and conditional box

-State and decision boxes used in conventional

flowcharts

-Conditional box characteristic to ASM

•State box

-Used to indicate states in control sequence

•Register operations and output signals used to

control generation of next state written

State box
•Represents one state in the ASM.

•May have an optional state output list.

•Single entry.

•Single exit to state or decision boxes.

State Box

State name T3

•Binary code of T3 – 011

•Register operation R <- 0

•START – name of

outputs signal generated

in this stage

Decision box

• Provides for next alternatives and
conditional outputs.

• Conditional output based on logic
value of Boolean expression involving
external input variables and status
information.

• Single entry.
• Dual exit, denoting if Boolean

expression is true or false.
• Exits to decision, state or conditional

boxes.

Decision Box
•Input condition subject to

test inside diamond shape

box

•Two or more outputs

represent exit paths

dependant on value of

condition in decision box

•Two paths for binary based
conditions

Conditional output box

• Provides a listing of output variables that are to
have a value logic-1, i.e., those output variables
being asserted.

• Single entry from decision box.
• Single exit to decision or state box.

•In state T1

Output signal START

generated

Status of input E

checked

•If E = 1, R <- 0,

otherwise remains

unchanged

•Conditional

operation executed

depending on result

of coming from

decision box

Conditional Box

ASM Block

• Consists of the interconnection of a single state box
along with one or more decision and/or conditional
boxes.

• It has one entry path which leads directly to its state box,
and one or more exit paths.

• Each exit path must lead directly to a state, including the
state box in itself.

• A path through an ASM block from its state box to an exit
path is called a link path.

Timing Considerations
All sequential elements in datapath and control

path controlled by master-clock generator.

Does not necessarily imply single clock in design.

•Multiple clocks can be obtained through division of clock

signals from master-clock generator.

•Not only internal signals, but also inputs

synchronized with clock.

•Normally, inputs supplied by other devices working

with the same master clock.

•Some inputs can arrive asynchronously

Difficult to handle by synchronous designs, require

asynchronous glue-logic.

•In conventional flowchart, evaluation
of each chart element takes one clock
cycle

Step 1: Reg A incremented

Step 2: Condition E evaluated

Step 3: Based on evaluation results,
state

T2, T3 or T4 entered

•In ASM the entire block considered

as one unit

•All operations within block occurring

during single edge transition

The next state evaluated during the
same clock

System enters next state T2, T3 or T4
during transition of next clock

ASM Block

ASM Block

• An ASM block describes the operation of the system during the state
time in which it is in the state associated with the block.

• The outputs listed in the state box are asserted.
• The conditions indicated in the decision boxes are evaluated

simultaneously to determine which link path is to be followed.
• If a conditional box is found in the selected path then the outputs

found in its output list are asserted.
• Boolean expression may be written for each link path. The selected

link paths are those that evaluate to logic-1.

Analyze a sequential circuit using JK Flip-
Flops

Analysis (JK FF)
The flip-flop input equations are:

The sequential circuit output equation is:

The next-state equations for the flip-flops are:

The corresponding next-state (K-) maps are

The state table, and transition table, is then:

The state diagram can then be drawn from the state table:

MODE OF OPERATIONS
Steady-state condition: Current states and next states are the
same Difference between Y and y will cause a transition

Fundamental mode:
•No simultaneous changes of two or more variables
• The time between two input changes must be longer than the
time it takes the circuit to a stable state
•The input signals change one at a time and only when the circuit is
in a stable condition Fundamental Mode

Pulse Mode:
 the inputs and outputs are represented by pulses
only one input is allowed to have pulse present at any time
 Similar to synchronous sequential circuits except without a clock
signal

