
Number Systems



Common Number Systems

System Base Symbols
Used by 
humans?

Used in 
computers?

Decimal 10 0, 1, … 9 Yes No

Binary 2 0, 1 No Yes

Octal 8 0, 1, … 7 No No

Hexa-
decimal

16 0, 1, … 9,
A, B, … F

No No



Conversion Among Bases
• The possibilities:

Hexadeci
mal

Decimal Octal

Binary

Quick Example
2510 = 110012 = 318 = 1916

Base



Binary to Decimal
• Technique

– Multiply each bit by 2n, where n is the “weight” of 
the bit

– The weight is the position of the bit, starting from 
0 on the right

– Add the results



Example

1010112 => 1 x 20 = 1
1 x 21 = 2
0 x 22 = 0
1 x 23 = 8
0 x 24 = 0
1 x 25 = 32

4310

Bit “0”



Octal to Decimal

• Technique
– Multiply each bit by 8n, where n is the “weight” of 

the bit
– The weight is the position of the bit, starting from 

0 on the right
– Add the results



Example

7248 => 4 x 80 = 4
2 x 81 = 16
7 x 82 = 448

46810



Hexadecimal to Decimal

• Technique
– Multiply each bit by 16n, where n is the “weight” 

of the bit
– The weight is the position of the bit, starting from 

0 on the right
– Add the results



Example

ABC16 => C x 160 = 12 x   1 =   12
B x 161 = 11 x  16 =  176
A x 162 = 10 x 256 = 2560

274810



Decimal to Binary

• Technique
– Divide by two, keep track of the remainder
– First remainder is bit 0 (LSB, least-significant bit)
– Second remainder is bit 1
– Etc.



Example
12510 = ?2

2 125
62   12    
31   02    
15   12    
7   12    
3   12    
1   12    
0   1

12510 = 11111012



Octal to Binary

Hexadecimal

Decimal Octal

Binary



Octal to Binary

• Technique
– Convert each octal digit to a 3-bit equivalent 

binary representation



Example
7058 = ?2

7   0   5

111 000 101

7058 = 1110001012



Hexadecimal to Binary

Hexadecimal

Decimal Octal

Binary



Hexadecimal to Binary

• Technique
– Convert each hexadecimal digit to a 4-bit 

equivalent binary representation



Example
10AF16 = ?2

1    0    A    F

0001 0000 1010 1111

10AF16 = 00010000101011112



Decimal to Octal

Hexadecimal

Decimal Octal

Binary



Decimal to Octal

• Technique
– Divide by 8
– Keep track of the remainder



Example
123410 = ?8

8  1234
154   28
19   28
2   38
0   2

123410 = 23228



Decimal to Hexadecimal

Hexadecimal

Decimal Octal

Binary



Decimal to Hexadecimal

• Technique
– Divide by 16
– Keep track of the remainder



Example
123410 = ?16

123410 = 4D216

16  1234
77   216
4   13 = D16
0   4



Binary to Octal

Hexadecimal

Decimal Octal

Binary



Binary to Octal

• Technique
– Group bits in threes, starting on right
– Convert to octal digits



Example
10110101112 = ?8

1 011 010 111

1  3   2   7

10110101112 = 13278



Binary to Hexadecimal

Hexadecimal

Decimal Octal

Binary



Binary to Hexadecimal

• Technique
– Group bits in fours, starting on right
– Convert to hexadecimal digits



Example
10101110112 = ?16

10 1011 1011

2 B     B

10101110112 = 2BB16



Octal to Hexadecimal

Hexadecimal

Decimal Octal

Binary



Octal to Hexadecimal

• Technique
– Use binary as an intermediary



Example
10768 = ?16

1    0     7     6

001  000   111   110

2     3       E

10768 = 23E16



Hexadecimal to Octal

Hexadecimal

Decimal Octal

Binary



Hexadecimal to Octal

• Technique
– Use binary as an intermediary



Example
1F0C16 = ?8

1     F      0      C

0001  1111   0000   1100

1   7   4     1     4

1F0C16 = 174148



Common Powers (1 of 2)

• Base 10
Power Preface Symbol

10-12 pico p

10-9 nano n

10-6 micro 

10-3 milli m

103 kilo k

106 mega M

109 giga G

1012 tera T

Value

.000000000001

.000000001

.000001

.001

1000

1000000

1000000000

1000000000000



Common Powers (2 of 2)

• Base 2 Power Preface Symbol

210 kilo k

220 mega M

230 Giga G

Value

1024

1048576

1073741824

• What is the value of “k”, “M”, and “G”?
• In computing, particularly w.r.t. memory,

the base-2 interpretation generally applies



Binary Addition (1 of 2)

• Two 1-bit values

A B A + B
0 0 0
0 1 1
1 0 1
1 1 10

“two”



Binary Addition (2 of 2)

• Two n-bit values
– Add individual bits
– Propagate carries
– E.g.,

10101     21
+ 11001   + 25
101110     46

11



Multiplication (1 of 3)

• Decimal (just for fun)

pp. 39

35
x 105
175
000
35
3675



Multiplication (3 of 3)

• Binary, two n-bit values
– As with decimal values
– E.g., 1110

x 1011
1110
1110
0000
1110
10011010



Fractions

• Decimal to decimal (just for fun)

pp. 46-
50

3.14 => 4 x 10-2 = 0.04
1 x 10-1 = 0.1
3 x 100 = 3

3.14



Fractions

• Binary to decimal

pp. 46-
50

10.1011 => 1 x 2-4 = 0.0625
1 x 2-3 = 0.125
0 x 2-2 = 0.0
1 x 2-1 = 0.5
0 x 20 = 0.0
1 x 21 = 2.0

2.6875



Fractions

• Decimal to binary

p. 50

3.14579

.14579
x     2
0.29158
x     2
0.58316
x     2
1.16632
x     2
0.33264
x     2
0.66528
x     2
1.33056

etc.11.001001...



Boolean Algebra



Introduction

• 1854: Logical algebra was published by 
George Boole known today as “Boolean 
Algebra”
– It’s a convenient way and systematic way of 

expressing and analyzing the operation of logic 
circuits.

• 1938: Claude Shannon was the first to apply 
Boole’s work to the analysis and design of 
logic circuits.



Boolean Operations & Expressions

• Variable – a symbol used to represent a logical 
quantity.

• Complement – the inverse of a variable and is 
indicated by a bar over the variable.

• Literal – a variable or the complement of a 
variable.



Laws & Rules of Boolean Algebra

• The basic laws of Boolean algebra:
– The commutative laws 
– The associative laws 

– The distributive laws



Commutative Laws

• The commutative law of addition for two 
variables is written as: A+B = B+A

• The commutative law of multiplication for 
two variables is written as: AB = BA

A
B A+B

B
A B+A

A
B AB

B
A B+A



Associative Laws

• The associative law of addition for 3 variables 
is written as: A+(B+C) = (A+B)+C

• The associative law of multiplication for 3 
variables is written as: A(BC) = (AB)C

A

B
A+(B+C)

C

A

B
(A+B)+C

C

A

B
A(BC)

C

A

B
(AB)C

C





B+C

A+B

BC

AB



Distributive Laws

• The distributive law is written for 3 variables as 
follows:  A(B+C) = AB + AC

B

C

A

B+C


A

B

C

A
XX

AB

AC

X=A(B+C) X=AB+AC



Rules of Boolean Algebra

1.6
.5

1.4
00.3
11.2

0.1









AA
AAA

AA
A
A

AA

BCACABA
BABAA

AABA
AA

AA
AAA











))(.(12
.11
.10

.9

0.8
.7



DeMorgan’s Theorems

• DeMorgan’s theorems provide mathematical 
verification of:
– the equivalency of the NAND and negative-OR 

gates
– the equivalency of the NOR and negative-AND 

gates.



DeMorgan’s Theorems
• The complement of two or 

more ANDed variables is 
equivalent to the OR of the 
complements of the 
individual variables.

• The complement of two or 
more ORed variables is 
equivalent to the AND of 
the complements of the 
individual variables. 

YXYX 

YXYX 

NAND Negative-OR

Negative-ANDNOR



DeMorgan’s Theorems (Exercises)

• Apply DeMorgan’s theorems to the expressions:

ZYXW

ZYX

ZYX

ZYX











DeMorgan’s Theorems (Exercises)

• Apply DeMorgan’s theorems to the expressions:

)(

)(

FEDCBA

EFDCBA

DEFABC

DCBA











Boolean Analysis of Logic Circuits

• Boolean algebra provides a concise way to 
express the operation of a logic circuit formed 
by a combination of logic gates
– so that the output can be determined for various 

combinations of input values.



Boolean Expression for a Logic Circuit

• To derive the Boolean expression for a given 
logic circuit, begin at the left-most inputs and 
work toward the final output, writing the 
expression for each gate.

C
D

B

A

CD

B+CD

A(B+CD)



Constructing a Truth Table for a Logic 
Circuit

• Once the Boolean expression for a given logic 
circuit has been determined, a truth table that 
shows the output for all possible values of the 
input variables can be developed.
– Let’s take the previous circuit as the example:

A(B+CD)
– There are four variables, hence 16 (24) 

combinations of values are possible.



Constructing a Truth Table for a Logic 
Circuit

• Evaluating the expression
– To evaluate the expression A(B+CD), first find the 

values of the variables that make the expression 
equal to 1 (using the rules for Boolean add & 
mult).

– In this case, the expression equals 1 only if A=1 
and B+CD=1 because

A(B+CD) = 1·1 = 1



Constructing a Truth Table for a Logic 
Circuit

• Evaluating the expression (cont’)
– Now, determine when B+CD term equals 1.
– The term B+CD=1 if either B=1 or CD=1 or if both 

B and CD equal 1 because
B+CD = 1+0 = 1
B+CD = 0+1 = 1
B+CD = 1+1 = 1

• The term CD=1 only if C=1 and D=1



Constructing a Truth Table for a Logic 
Circuit

• Evaluating the expression (cont’)
– Summary:
– A(B+CD)=1

• When A=1 and B=1 regardless of the values of C and D
• When A=1 and C=1 and D=1 regardless of the value of B

– The expression A(B+CD)=0 for all other value 
combinations of the variables.



Constructing a Truth Table for a Logic 
Circuit

• Putting the results in 
truth table format

INPUTSINPUTS OUTPUTOUTPUT

AA BB CC DD A(B+CD)A(B+CD)

00 00 00 00

00 00 00 11

00 00 11 00

00 00 11 11

00 11 00 00

00 11 00 11

00 11 11 00

00 11 11 11

11 00 00 00

11 00 00 11

11 00 11 00

11 00 11 11

11 11 00 00

11 11 00 11

11 11 11 00

11 11 11 11

INPUTSINPUTS OUTPUTOUTPUT

AA BB CC DD A(B+CD)A(B+CD)

00 00 00 00

00 00 00 11

00 00 11 00

00 00 11 11

00 11 00 00

00 11 00 11

00 11 11 00

00 11 11 11

11 00 00 00

11 00 00 11

11 00 11 00

11 00 11 11

11 11 00 00 11

11 11 00 11 11

11 11 11 00 11

11 11 11 11 11

When A=1 and 
B=1 regardless 
of  the values 
of  C and D
When A=1 and C=1 
and D=1 regardless of  
the value of  B

A(B+CD)=1

INPUTSINPUTS OUTPUTOUTPUT

AA BB CC DD A(B+CD)A(B+CD)

00 00 00 00

00 00 00 11

00 00 11 00

00 00 11 11

00 11 00 00

00 11 00 11

00 11 11 00

00 11 11 11

11 00 00 00

11 00 00 11

11 00 11 00

11 00 11 11 11

11 11 00 00 11

11 11 00 11 11

11 11 11 00 11

11 11 11 11 11

INPUTSINPUTS OUTPUTOUTPUT

AA BB CC DD A(B+CD)A(B+CD)

00 00 00 00 00

00 00 00 11 00

00 00 11 00 00

00 00 11 11 00

00 11 00 00 00

00 11 00 11 00

00 11 11 00 00

00 11 11 11 00

11 00 00 00 00

11 00 00 11 00

11 00 11 00 00

11 00 11 11 11

11 11 00 00 11

11 11 00 11 11

11 11 11 00 11

11 11 11 11 11



Karnaugh Maps
• Boolean algebra helps us simplify expressions and 

circuits

• Karnaugh Map: A graphical technique for simplifying 
a Boolean expression into either form:
– minimal sum of products (MSP)
– minimal product of sums (MPS)

• Goal of the simplification.
– There are a minimal number of product/sum terms
– Each term has a minimal number of literals

• Circuit-wise, this leads to a minimal two-level 
implementation



Re-arranging the Truth Table
• A two-variable function has four possible minterms. We can re-

arrange
these minterms into a Karnaugh map

• Now we can easily see which minterms contain common literals
– Minterms on the left and right sides contain y’ and y respectively
– Minterms in the top and bottom rows contain x’ and x respectively

x y minterm
0 0 x’y’
0 1 x’y
1 0 xy’
1 1 xy

Y

0 1
0 x’y’ x’y

X
1 xy’ xy

Y

0 1
0 x’y’ x’y

X
1 xy’ xy

Y’ Y
X’ x’y’ x’y
X xy’ xy



Karnaugh Map Simplifications
• Imagine a two-variable sum of minterms:

x’y’ + x’y

• Both of these minterms appear in the top row of a Karnaugh
map, which
means that they both contain the literal x’

• What happens if you simplify this expression using Boolean 
algebra?

x’y’ + x’y = x’(y’ + y) [ Distributive ]
= x’  1 [ y + y’ = 1 ]
= x’ [ x  1 = x ]

Y
x’y’ x’y

X xy’ xy



More Two-Variable Examples
• Another example expression is x’y + xy

– Both minterms appear in the right side, where y is 
uncomplemented

– Thus, we can reduce x’y + xy to just y

• How about x’y’ + x’y + xy?
– We have x’y’ + x’y in the top row, corresponding to x’
– There’s also x’y + xy in the right side, corresponding 

to y
– This whole expression can be reduced to x’ + y

Y
x’y’ x’y

X xy’ xy

Y
x’y’ x’y

X xy’ xy



A Three-Variable Karnaugh Map
• For a three-variable expression with inputs x, y, z, 

the arrangement of
minterms is more tricky:

• Another way to label the K-map (use whichever you 
like):

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

Y
m0 m1 m3 m2

X m4 m5 m7 m6

Z

YZ
00 01 11 10

0 x’y’z’ x’y’z x’yz x’yz’
X

1 xy’z’ xy’z xyz xyz’

  YZ 
  00 01 11 10 

X 
0 m0 m1 m3 m2 
1 m4 m5 m7 m6 

 



Why the funny ordering?
• With this ordering, any group of 2, 4 or 8 adjacent squares on the map

contains common literals that can be factored out

• “Adjacency” includes wrapping around the left and right sides:

• We’ll use this property of adjacent squares to do our simplifications.

x’y’z + x’yz
= x’z(y’ + y)
= x’z  1
= x’z

x’y’z’ + xy’z’ + x’yz’ + xyz’
= z’(x’y’ + xy’ + x’y + xy)
= z’(y’(x’ + x) + y(x’ + x))
= z’(y’+y)
= z’

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z



K-maps From Truth Tables
• We can fill in the K-map directly from a truth 

table
– The output in row i of the table goes into square mi of 

the K-map
– Remember that the rightmost columns of the K-map 

are “switched”

Y
m0 m1 m3 m2

X m4 m5 m7 m6

Z

x y z f(x ,y ,z )
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0

1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Y
0 1 0 0

X 0 1 1 1
Z
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Reading the MSP from the K-map
• You can find the minimal SoP expression

– Each rectangle corresponds to one product term
– The product is determined by finding the common 

literals in that 
rectangle

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

Y
0 1 0 0

X 0 1 1 1
Z

xyy’z

F(x,y,z)= y’z + xy
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Grouping the Minterms Together
• The most difficult step is grouping together all 

the 1s in the K-map
– Make rectangles around groups of one, two, four or 

eight 1s
– All of the 1s in the map should be included in at least 

one rectangle
– Do not include any of the 0s
– Each group corresponds to one product term

Y
0 1 0 0

X 0 1 1 1
Z
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For the Simplest Result
• Make as few rectangles as possible, to 

minimize the number of products in the final 
expression.

• Make each rectangle as large as possible, to 
minimize the number of literals in each term.

• Rectangles can be overlapped, if that makes 
them larger.



K-map Simplification of SoP Expressions
• Let’s consider simplifying f(x,y,z) = xy + y’z + xz

• You should convert the expression into a sum of minterms form, 
– The easiest way to do this is to make a truth table for the function, and 

then read off the minterms
– You can either write out the literals or use the minterm shorthand

• Here is the truth table and sum of minterms for our example:

x y z f(x,y,z)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

f(x,y,z) = x’y’z + xy’z + xyz’ + xyz
= m1 + m5 + m6 + m7



Unsimplifying Expressions
• You can also convert the expression to a sum of minterms with Boolean

algebra
– Apply the distributive law in reverse to add in missing variables.
– Very few people actually do this, but it’s occasionally useful.

• In both cases, we’re actually “unsimplifying” our example expression
– The resulting expression is larger than the original one!
– But having all the individual minterms makes it easy to combine them 

together with the K-map

xy + y’z + xz = (xy  1) + (y’z  1) + (xz  1)
= (xy  (z’ + z)) + (y’z  (x’ + x)) + (xz  (y’ + y))
= (xyz’ + xyz) + (x’y’z + xy’z) + (xy’z + xyz)
= xyz’ + xyz + x’y’z + xy’z
= m1 + m5 + m6 + m7
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Making the Example K-map
• In our example, we can write f(x,y,z) in two 

equivalent ways

• In either case, the resulting K-map is shown 
below

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

f(x,y,z) = x’y’z + xy’z + xyz’ + xyz Y
m0 m1 m3 m2

X m4 m5 m7 m6

Z

f(x,y,z) = m1 + m5 + m6 + m7

Y
0 1 0 0

X 0 1 1 1
Z
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Practice K-map 1
• Simplify the sum of minterms m1 + m3 + m5 + m6

Y

X
Z

Y
m0 m1 m3 m2

X m4 m5 m7 m6

Z
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Solutions for Practice K-map 1
• Here is the filled in K-map, with all groups shown

– The magenta and green groups overlap, which makes 
each of them as 
large as possible

– Minterm m6 is in a group all by its lonesome

• The final MSP here is x’z + y’z + xyz’

Y
0 1 1 0

X 0 1 0 1
Z
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K-maps can be tricky!
• There may not necessarily be a unique MSP. The K-map below yields two

valid and equivalent MSPs, because there are two possible ways to 
include minterm m7

• Remember that overlapping groups is possible, as shown above

Y
0 1 0 1

X 0 1 1 1
Z

y’z + yz’ + xy y’z + yz’ + xz

Y
0 1 0 1

X 0 1 1 1
Z

Y
0 1 0 1

X 0 1 1 1
Z
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Four-variable K-maps – f(W,X,Y,Z)
• We can do four-variable expressions too!

– The minterms in the third and fourth columns, and in the third and
fourth rows, are switched around.

– Again, this ensures that adjacent squares have common literals

• Grouping minterms is similar to the three-variable case, but:
– You can have rectangular groups of 1, 2, 4, 8 or 16 minterms
– You can wrap around all four sides
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Four-variable K-maps

Y
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y
w’x’y’z’ w’x’y’z w’x’yz w’x’yz’
w’xy’z’ w’xy’z w’xyz w’xyz’
wxy’z’ wxy’z wxyz wxyz’

X
W

wx’y’z’ wx’y’z wx’yz wx’yz’
Z
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Example: Simplify m0+m2+m5+m8+m10+m13

• The expression is already a sum of minterms, so here’s the K-
map:

• We can make the following groups, resulting in the MSP x’z’ + 
xy’z

Y
1 0 0 1
0 1 0 0
0 1 0 0

X
W

1 0 0 1
Z

Y
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y
1 0 0 1
0 1 0 0
0 1 0 0

X
W

1 0 0 1
Z

Y
w’x’y’z’ w’x’y’z w’x’yz w’x’yz’
w’xy’z’ w’xy’z w’xyz w’xyz’
wxy’z’ wxy’z wxyz wxyz’

X
W

wx’y’z’ wx’y’z wx’yz wx’yz’
Z
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Five-variable K-maps – f(V,W,X,Y,Z)

V= 0 V= 1

Y
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y
m16 m17 m19 m8

m20 m21 m23 m22

m28 m29 m31 m30
X

W
m24 m25 m27 m26

Z
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Simplify f(V,W,X,Y,Z)=Σm(0,1,4,5,6,11,12,14,16,20,22,28,30,31)

V= 0 V= 1

1 1

1 1 1

1

1 1

1

1 1

1 11

f = XZ’                Σm(4,6,12,14,20,22,28,30) 
+ V’W’Y’            Σm(0,1,4,5) 
+ W’Y’Z’            Σm(0,4,16,20) 
+ VWXY            Σm(30,31) 
+ V’WX’YZ        m11 
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PoS Optimization

• Maxterms are grouped to find minimal PoS 
expression

x +y+z x+y+z’ x+y’+z’ x+y’+z

x’ +y+z x’+y+z’ x’+y’+z’ x’+y’+z

00           01           11         10

0

1
x

yz



PoS Optimization
• F(W,X,Y,Z)= ∏ M(0,1,2,4,5)

x +y+z x+y+z’ x+y’+z’ x+y’+z

x’ +y+z x’+y+z’ x’+y’+z’ x’+y’+z

00           01           11         10

0

1
x

yz

0 0 1 0

0 0 1 1

00           01           11         10

0

1
x

yz

F(W,X,Y,Z)= Y . (X + Z)
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PoS Optimization from SoP
F(W,X,Y,Z)= Σm(0,1,2,5,8,9,10)

= ∏ M(3,4,6,7,11,12,13,14,15)

0

0 00

0

0 0 0 0

F(W,X,Y,Z)= (W’ + X’)(Y’ + Z’)(X’ + Z)

Or,

F(W,X,Y,Z)= X’Y’ + X’Z’ + W’Y’Z

Which one is the minimal one?
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SoP Optimization from PoS
F(W,X,Y,Z)= ∏ M(0,2,3,4,5,6)

=  Σm(1,7,8,9,10,11,12,13,14,15)

1

1

1 1 1 1

1 1 1 1

F(W,X,Y,Z)= W + XYZ + X’Y’Z
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I don’t care!
• You don’t always need all 2n input combinations in an n-variable function

– If you can guarantee that certain input combinations never occur
– If some outputs aren’t used in the rest of the circuit

• We mark don’t-care outputs in truth tables and K-maps with Xs.

• Within a K-map, each X can be considered as either 0 or 1. You should pick
the interpretation that allows for the most simplification.

x y z f(x,y,z)
0 0 0 0
0 0 1 1
0 1 0 X
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 X
1 1 1 1
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   Y  
 1 0 0 1  
 1 1 x 0 

0 x 1 1 
X 

W 
1 0 0 x  

  Z   
 

 

Practice K-map 
• Find a MSP for

f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z) = 
m(7,10,13)

This notation means that input combinations 
wxyz = 0111, 1010 and 1101
(corresponding to minterms m7, m10 and m13) are 
unused.
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Solutions for Practice K-map 
• Find a MSP for:   f(w,x,y,z) = m(0,2,4,5,8,14,15), 

d(w,x,y,z) = m(7,10,13)
Y

1 1
1 1 x

x 1 1
X

W
1 x

Z

f(w,x,y,z)= x’z’ + w’xy’ + wxy
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K-map Summary
• K-maps are an alternative to algebra for simplifying 

expressions
– The result is a MSP/MPS, which leads to a minimal two-level circuit
– It’s easy to handle don’t-care conditions
– K-maps are really only good for manual simplification of small 

expressions...

• Things to keep in mind:
– Remember the correct order of minterms/maxterms on the K-map
– When grouping, you can wrap around all sides of the K-map, and 

your groups can overlap
– Make as few rectangles as possible, but make each of them as large 

as possible. This leads to fewer, but simpler, product terms
– There may be more than one valid solution



Tabulation Method – STEP 1STEP 1
1. Partition Prime Implicants (or minterms) According to Number of 1’s

2. Check Adjacent Classes for Cube Merging Building a New List

3. If Entry in New List Covers Entry in Current List – Disregard Current 
List Entry

4. If Current List = New List
HALT

Else
Current List  New List
New List  NULL
Go To Step 1



STEP 1 - EXAMPLE

f on = {m0, m1, m2, m3, m5, m8, m10, m11, m13, m15} =  (0, 1, 2, 3, 5, 8, 10, 11, 13, 15)

Minterm Cube  
0 0 0 0 0  
1 0 0 0 1  
2 0 0 1 0  
8 1 0 0 0  
3 0 0 1 1  
5 0 1 0 1  

10 1 0 1 0  
11 1 0 1 1  
13 1 1 0 1  
15 1 1 1 1  

 



STEP 1 - EXAMPLE

f on = {m0, m1, m2, m3, m5, m8, m10, m11, m13, m15} =  (0, 1, 2, 3, 5, 8, 10, 11, 13, 15)

Minterm Cube  
0 0 0 0 0  
1 0 0 0 1  
2 0 0 1 0  
8 1 0 0 0  
3 0 0 1 1  
5 0 1 0 1  

10 1 0 1 0  
11 1 0 1 1  
13 1 1 0 1  
15 1 1 1 1  

 

Minterm Cube  
0,1 0 0 0 -  
0,2 0 0 - 0  
0,8 - 0 0 0  
1,3 0 0 - 1  
1,5 0 - 0 1  
2,3 0 0 1 -  

2,10 - 0 1 0  
8,10 1 0 - 0  
3,11 - 0 1 1  
5,13 - 1 0 1  

10,11 1 0 1 -  
11,15 1 - 1 1  
13,15 1 1 - 1  

 



STEP 1 - EXAMPLE

f on = {m0, m1, m2, m3, m5, m8, m10, m11, m13, m15} =  (0, 1, 2, 3, 5, 8, 10, 11, 13, 15)

Minterm Cube  
0 0 0 0 0  
1 0 0 0 1  
2 0 0 1 0  
8 1 0 0 0  
3 0 0 1 1  
5 0 1 0 1  

10 1 0 1 0  
11 1 0 1 1  
13 1 1 0 1  
15 1 1 1 1  

 

Minterm Cube  
0,1 0 0 0 -  
0,2 0 0 - 0  
0,8 - 0 0 0  
1,3 0 0 - 1  
1,5 0 - 0 1  
2,3 0 0 1 -  

2,10 - 0 1 0  
8,10 1 0 - 0  
3,11 - 0 1 1  
5,13 - 1 0 1  

10,11 1 0 1 -  
11,15 1 - 1 1  
13,15 1 1 - 1  

 

Minterm Cube  
0,1,2,3 0 0 - -  

0,8,2,10 - 0 - 0  
2,3,10,11 - 0 1 -  
 



STEP 1 - EXAMPLE

f on = {m0, m1, m2, m3, m5, m8, m10, m11, m13, m15} =  (0, 1, 2, 3, 5, 8, 10, 11, 13, 15)

Minterm Cube  
0 0 0 0 0  
1 0 0 0 1  
2 0 0 1 0  
8 1 0 0 0  
3 0 0 1 1  
5 0 1 0 1  

10 1 0 1 0  
11 1 0 1 1  
13 1 1 0 1  
15 1 1 1 1  

 

Minterm Cube  
0,1 0 0 0 -  
0,2 0 0 - 0  
0,8 - 0 0 0  
1,3 0 0 - 1  
1,5 0 - 0 1 PI=D 
2,3 0 0 1 -  

2,10 - 0 1 0  
8,10 1 0 - 0  
3,11 - 0 1 1  
5,13 - 1 0 1 PI=E 
10,11 1 0 1 -  
11,15 1 - 1 1 PI=F 
13,15 1 1 - 1 PI=G 

 

Minterm Cube  
0,1,2,3 0 0 - - PI=A 

0,8,2,10 - 0 - 0 PI=C 
2,3,10,11 - 0 1 - PI=B 
 

f on = {A,B,C,D,E,F,G} = {00--, -01-, -0-0, 0-01, -101, 1-11, 11-1}



STEP 2 – Construct Cover Table

• PIs Along Vertical Axis (in order of # of literals)
• Minterms Along Horizontal Axis

 0 1 2 3 5 8 10 11 13 15 
A x x x x       
B   x x   x x   
C x  x   x x    
D  x   x      
E     x    x  
F        x  x 
G         x x 
 

NOTE: Table 4.2 in book is incomplete



STEP 2 – Finding the Minimum Cover
• Extract All Essential Prime Implicants, EPI
• EPIs are the PI for which a Single x Appears in a Column

 0 1 2 3 5 8 10 11 13 15 
A x x x x       
B   x x   x x   
C x  x   x x    
D  x   x      
E     x    x  
F        x  x 
G         x x 
 

• C is an EPI so: f on={C, ...}

• Row C and Columns 0, 2, 8, and 10 can be Eliminated Giving Reduced 
Cover Table

• Examine Reduced Table for New EPIs



STEP 2 – Reduced Table

 0 1 2 3 5 8 10 11 13 15 
A x x x x       
B   x x   x x   
C x  x   x x    
D  x   x      
E     x    x  
F        x  x 
G         x x 
 

 1 3 5 11 13 15 
A x x     
B  x  x   
D x  x    
E   x  x  
F    x  x 
G     x x 
 

Essential row

Distinguished Column

•The Row of an EPI is an Essential row

•The Column of the Single x in the 
Essential Row is a Distinguished Column



Row and Column DominanceRow and Column Dominance
• If Row P has x’s Everywhere Row Q Does 

Then Q Dominates P if P has fewer x’s

• If Column i has x’s Everywhere j Does
Then j Dominates i if i has fewer x’s

• If Row P is equal to Row Q and Row Q does not cost more than Row P, 
eliminate Row P, or if Row P is dominated by Row Q and Row Q Does 
not cost more than Row P, eliminate Row P

• If Column i is equal to Column j, eliminate Column i or if Column i
dominates Column j, eliminate Column i



STEP 3 – The Reduced Cover Table
• Initially, Columns 0, 2, 8 and 10 Removed

 1 3 5 11 13 15 
A x x     
B  x  x   
D x  x    
E   x  x  
F    x  x 
G     x x 
 

• No EPIs are Present 
• No Row Dominance Exists
• No Column Dominance Exists
• This is Cyclic Cover Table
• Must Solve Exactly OR Use a Heuristic



NAND Function Implementation 

• NAND gates can implement a simplified Sum-
ofProducts form. Constructing two level 
NAND-NAND gate circuits

The first level is two 2-input NAND gates using ANDInvert. The second level is one 2-
input NAND gate using Invert-OR. Using the NAND relationship, we 



Logic Family Characteristics

• Complementary metal oxide semiconductor 
(CMOS)
– most widely used family for large-scale devices
– combines high speed with low power consumption
– usually operates from a single supply of 5 – 15 V
– excellent noise immunity of about 30% of supply voltage
– can be connected to a large number of gates (about 50)
– many forms – some with tPD down to 1 ns
– power consumption depends on speed (perhaps 1 mW)



NAND Implementation (Cont.)

In the implementation, note that the bubbles 
are on opposite ends of the same line. Thus, 
they can be combined and deleted: 

This form of the implementation is the Sum-of-Products 
form. 



NOR Gates

The basic positive logic NOR gate (Not-OR) is 
denoted by the following symbol: 

This is called the OR-Invert, since it is logically an OR function followed 
by an invert. By DeMorgan's Law we have the following Invert-AND 
symbol for a NOR gate: 



General Implementations (Cont.)
Given a two level implementation desired, use the previous transfromations

to get it into one of the below forms. Then follow the steps to transform 
the function to the desired form:



Multi-level NAND Implementations

• Add inverters in two-level implementation 
into the cost picture 

• Attempt to “combine” inverters to reduce the 
term count

• Attempt to reduce literal + tem count by 
factoring expression into POSOP or SOPOS



• Transistor-transistor logic (TTL)
– based on bipolar transistors
– one of the most widely used families for small- and 

medium-scale devices – rarely used for VLSI
– typically operated from 5V supply
– typical noise immunity about 1 – 1.6 V
– many forms, some optimised for speed, power, etc.
– high speed versions comparable to CMOS (~ 1.5 ns)
– low-power versions down to about 1 mW/gate



• Emitter-coupled logic (ECL)
– based on bipolar transistors, but removes 

problems of storage time by preventing the 
transistors from saturating

– very fast operation - propagation delays of 1ns or 
less

– high power consumption, perhaps 60 mW/gate
– low noise immunity of about 0.2-0.25 V
– used in some high speed specialist applications, 

but now largely replaced by high speed CMOS



A Comparison of Logic Families

Parameter CMOS TTL ECL

Basic gate NAND/NOR NAND OR/NOR

Fan-out >50 10 25

Power per gate (mW) 1 @ 1 MHz 1 - 22 4 - 55

Noise immunity Excellent Very good Good

tPD (ns) 1 - 200 1.5 – 33 1 - 4



Complementary Metal Oxide Semiconductor

• A CMOS inverter



• CMOS gates



• CMOS logic levels and noise immunity



Transistor-Transistor Logic

• Discrete TTL inverter and NAND gate circuits



• A basic integrated circuit TTL NAND gate



• A standard TTL NAND gate



• A TTL NAND gate with open collector output
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Combinational Logic

• Logic circuits for digital systems may be combinational
or sequential.

• A combinational circuit consists of input variables, logic 
gates, and output variables.
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Analysis procedure
To obtain the output Boolean functions from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary 
symbols. Determine the Boolean functions for each gate output.

2. Label the gates that are a function of input variables and previously labeled 
gates with other arbitrary symbols. Find the Boolean functions for these 
gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are 
obtained.

4. By repeated substitution of previously defined functions, obtain the output 
Boolean functions in terms of input variables.
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Example
F2 = AB + AC + BC;  T1 = A + B + C; T2 = ABC;   T3 = F2’T1;  
F1 = T3 + T2

F1 = T3 + T2 = F2’T1 + ABC = A’BC’ + A’B’C + AB’C’ + ABC
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Derive truth table from logic diagram

• We can derive the truth table in Table 4-1 by using the 
circuit of Fig.4-2.



123

Design procedure
1. Table4-2 is a Code-Conversion example, first, we can 

list the relation of the BCD and Excess-3 codes in the 
truth table.
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Karnaugh map
2. For each symbol of the Excess-3 code, we use 1’s to 

draw the map for simplifying Boolean function.



125

Circuit implementation
z = D’; y = CD + C’D’ = CD + (C + D)’
x = B’C + B’D + BC’D’ = B’(C + D) + B(C + D)’
w = A + BC + BD = A + B(C + D)
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Binary Adder-Subtractor
• A combinational circuit that performs the addition of two bits is 

called a half adder.
• The truth table for the half adder is listed below:

S = x’y + xy’
C = xy

S: Sum
C: Carry
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Implementation of Half-Adder
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Full-Adder
• One that performs the addition of three bits(two 

significant bits and a previous carry) is a full adder.



129

Simplified  Expressions

S = x’y’z + x’yz’ + xy’z’ + xyz
C = xy + xz + yz

C
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Full adder implemented in SOP
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Another implementation
• Full-adder can also implemented with two half adders 

and one OR gate (Carry Look-Ahead adder).
S = z ⊕ (x ⊕ y)

= z’(xy’ + x’y) + z(xy’ + x’y)’
= xy’z’ + x’yz’ + xyz + x’y’z

C = z(xy’ + x’y) + xy = xy’z + x’yz + xy



Half Subtractor
Truth table

Logic Circuit



Full Subtractor



Full Subtractor
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Binary adder
• This is also called 

Ripple Carry 
Adder ,because of the 
construction with full 
adders are connected 
in cascade.
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Carry Propagation

• Fig.4-9 causes a unstable factor on carry bit, and produces a 
longest propagation delay.

• The signal from Ci to the output carry Ci+1, propagates through an 
AND and OR gates, so, for an n-bit RCA, there are 2n gate levels 
for the carry to propagate from input to output.
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Carry Propagation

• Because the propagation delay will affect the output signals on 
different time, so the signals are given enough time to get the 
precise and stable outputs.

• The most widely used technique employs the principle of carry 
look-ahead to improve the speed of the algorithm.
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Boolean functions
Pi = Ai ⊕ Bi steady state value
Gi = AiBi steady state value

Output sum and carry
Si = Pi ⊕ Ci

Ci+1 = Gi + PiCi

Gi : carry generate Pi : carry propagate
C0 = input  carry
C1 = G0 + P0C0

C2 = G1 + P1C1  = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

• C3 does not have to wait for C2 and C1 to propagate.
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Logic diagram of 
carry look-ahead generator

• C3 is propagated at the same time as C2 and C1.
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4-bit adder with carry lookahead

• Delay time of n-bit CLAA = XOR + (AND + OR) + XOR
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Binary subtractor
M = 1subtractor ; M = 0adder
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4-5 Decimal adder
BCD adder can’t exceed 9 on each input digit. K is the carry.
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Rules of BCD adder
• When the binary sum is greater than 1001, we obtain a non-valid 

BCD representation.

• The addition of binary 6(0110) to the binary sum converts it to 
the correct BCD representation and also produces an output carry 
as required.

• To distinguish them from binary 1000 and 1001, which also have a 
1 in position Z8, we specify further that either Z4 or Z2 must have a 
1.

C = K + Z8Z4 + Z8Z2
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Implementation of BCD adder
• A decimal parallel 

adder that adds n 
decimal digits needs n 
BCD adder stages.

• The output carry from 
one stage must be 
connected to the 
input carry of the next 
higher-order stage.

If =1

0110
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4-6. Binary multiplier
• Usually there are more bits in the partial products and it is necessary to use full 

adders to produce the sum of the partial products.

And
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4-bit by 3-bit binary multiplier

• For J multiplier bits and K 
multiplicand bits we need (J 
X K) AND gates and (J − 1) K-
bit adders to produce a 
product of J+K bits.

• K=4 and J=3, we need 12 
AND gates and two 4-bit 
adders.
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Magnitude comparator
• The equality relation of each pair 

of bits can be expressed logically 
with an exclusive-NOR function as:

A = A3A2A1A0 ; B = B3B2B1B0

xi=AiBi+Ai’Bi’ for i = 0, 1, 2, 3

(A = B) = x3x2x1x0
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Magnitude comparator
• We inspect the relative magnitudes 

of pairs of MSB. If equal, we 
compare the next lower significant 
pair of digits until a pair of unequal 
digits is reached.

• If the corresponding digit of A is 1 
and that of B is 0, we conclude that 
A>B.

(A>B)=
A3B’3+x3A2B’2+x3x2A1B’1+x3x2x1A0B’0
(A<B)=
A’3B3+x3A’2B2+x3x2A’1B1+x3x2x1A’0B0
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Decoders

• The decoder is called n-to-m-line decoder, where 
m≤2n .

• the decoder is also used in conjunction with other 
code converters such as a BCD-to-seven_segment 
decoder.

• 3-to-8 line decoder: For each possible input 
combination, there are seven outputs that are equal 
to 0 and only one that is equal to 1.
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Implementation and truth table
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Decoder with enable input
• Some decoders are constructed with NAND gates, it becomes 

more economical to generate the decoder minterms in their 
complemented form.

• As indicated by the truth table , only one output can be equal to 0
at any given time, all other outputs are equal to 1.
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Demultiplexer
• A decoder with an enable input is referred to as a 

decoder/demultiplexer.
• The truth table of demultiplexer is the same with 

decoder.

Demultiplexer

D0

D1

D2

D3

E

A B
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3-to-8 decoder with enable implement the 
4-to-16 decoder
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Implementation of a Full Adder with a 
Decoder

• From table 4-4, we obtain the functions for the combinational circuit in sum of 
minterms:

S(x, y, z) = ∑(1, 2, 4, 7)
C(x, y, z) = ∑(3, 5, 6, 7)
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4-9. Encoders
• An encoder is the inverse operation of a decoder.
• We can derive the Boolean functions by table 4-7

z = D1 + D3 + D5 + D7

y = D2 + D3 + D6 + D7

x = D4 + D5 + D6 + D7
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Priority encoder

• If two inputs are active simultaneously, the output produces 
an undefined combination. We can establish an input priority
to ensure that only one input is encoded.

• Another ambiguity in the octal-to-binary encoder is that an 
output with all 0’s is generated when all the inputs are 0; the 
output is the same as when D0 is equal to 1.

• The discrepancy tables on Table 4-7 and Table 4-8 can resolve 
aforesaid condition by providing one more output to indicate 
that at least one input is equal to 1. 
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Priority encoder
V=0no valid inputs
V=1valid inputs

X’s in output columns represent 
don’t-care conditions
X’s in the input columns are 
useful for representing a truth 
table in condensed form. 
Instead of listing all 16 
minterms of four variables.
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4-input priority encoder

• Implementation of 
table 4-8

x = D2 + D3

y = D3 + D1D’2
V = D0 + D1 + D2 + D3

0

0
0

0
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4-10. Multiplexers

S = 0, Y = I0 Truth Table S Y Y = S’I0 + SI1

S = 1, Y = I1 0 I0

1 I1
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4-to-1 Line Multiplexer
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Quadruple 2-to-1 Line Multiplexer
• Multiplexer circuits can be combined with common selection inputs to provide 

multiple-bit selection logic. Compare with Fig4-24.

I0

I1

Y
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Boolean function implementation

• A more efficient method for implementing a Boolean function of 
n variables with a multiplexer that has n-1 selection inputs.

F(x, y, z) = (1,2,6,7)
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4-input function with a multiplexer

F(A, B, C, D) = (1, 3, 4, 11, 12, 13, 14, 15)
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Three-State Gates
• A multiplexer can be constructed with three-state gates.
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Sequential Circuits

• A sequential circuit is one whose outputs depend not 
only on its current inputs, but also on the past 
sequence of inputs.

• In other words, sequential circuits must be able to 
”remember” (i.e., store) the past history of the inputs 
in order to produce the present output.

• The information about the previous inputs history is 
called the state of the system.

• A circuit that uses n binary state variables to store its 
past history can take up to 2n different states.

• Since n is always finite, sequential circuits are also 
called finite state machines (FSM).
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In short, sequential circuits are …

• circuits consisting of ordinary gates and 
feedback loops 

X1
X2
•
•
•

Xn

switching
network

Z1
Z2
•
•
•

Zn
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"remember"

"load"
"data" "stored value"

"0"

"1"

"stored value"

The simplest sequential circuit

• Two inverters and a feedback loop form a “static” storage 
cell
– The cell will hold value as long as it has power applied

• How to get a new value into the storage cell?
– selectively break feedback path
– load new value into cell D latch

(= state)
bistable cell
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Latches and Flip-Flops

• The two most popular varieties of storage cells used to 
build sequential circuits are: latches and flip-flops.
– Latch: level sensitive storage element
– Flip-Flop: edge triggered storage element

• Common examples of latches: 
S-R latch, \S-\R latch, D latch (= gated D latch)

• Common examples of flip-flops: 
D-FF, D-FF with enable, Scan-FF, JK-FF, T-FF
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S-R (Set-Reset) Latch

S-R latch: similar to inverter pair, with capability to force output to 0 (reset=1) or 1 
(set=1)

R
S

Q

X Y      NOR
0 0        1
0 1        0
1 0        0
1 1        0

QN
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S-R latch operation

S
R

QN

Q
0
0

0=

=1

S
R

QN

Q
1
0

0=

=0

=1
0=

S
R

QN

Q
0
0 =1

=0

=1

S
R

QN

Q
0
1 =1

=1

=0
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S-R latch operation (cont’d)

Both Q and QN are 0 at the same time

Race

(hold)
(reset)
(set)
(forbidden)
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Improper S-R latch operation

Reset Hold Set SetReset Race

R

S

Q

QN

QN Theoretically the circuit 
starts to oscillate
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S(t) R(t) Q(t)       Q(t+)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

hold

reset

set

not allowed

next state equation:
Q(t+) = S(t) + R’(t) Q(t)

R-S latch analysis

• Break feedback path

R

S

Q

QN

Q(t+)

R(t)
S(t)

Q(t)

0 0

1 0

X 1

X 1Q(t)

R(t)

S(t)

Q+ = Q* = S + R’ Q
a.k.a. characteristic equation
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S-R Latch

RN
SN

Q(t)

X 1

X 1

0 0

1 0Q(t)

RN(t)

SN(t)

SN(t) RN(t)  Q(t)   Q(t+)
1 1 0 0
1 1 1 1
1 0 0 0
1 0 1 0
0 1 0 1
0 1 1 1
0 0 0 X
0 0 1 X

hold

reset

set

not allowed

next state equation:
Q(t+) = S’(t) + R(t) Q(t)

Q+ = Q* = S’ + R Q
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D Latch  (= Transparent Latch)

=
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D-Latch Timing Parameters

• The D Latch eliminates the S=R=1 problem of the SR latch
• However, violations of setup and hold time still cause metastability
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Clock signals

• Clocks are regular periodic signals used to specify state changes
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D Flip-Flop (positive edge 
triggered)

Notice: the little triangle !

Functional Table Truth Table
More compact

Truth Table

D         Q+

0          0
1          1

Next state equation:

CLK

D

Q

inputs sampled on rising edge; outputs change after rising edge
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Setup and hold times for an 
edge-triggered DFF
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Minimum clock period T ?

Example with T = 9 ns

tpINV = 2 ns
tpFF = 5 ns
tsuFF = 3 ns

Example with T = 15 ns

T = 9 ns T = 15 ns
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Minimum clock period T ? (cont’d)

tpINV = 2 ns
tpFF = 5 ns
tsuFF = 3 ns

Tmin = 10 ns

Observation:
thFF doesn’t affect this calculation
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D Flip-Flop (negative edge 
triggered)

inputs sampled on falling edge; outputs change after falling edge
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DFF with asynchronous preset 
and clear
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DFF with asynchronous preset 
and clear (cont’d)
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DFF with enable

D

CK

0
1 Q

Q’

D
EN

CLK

Reliable alternative
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DFF with enable (cont’d)
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JK Flip Flop (rising edge triggered)

=

Functional Table Truth Table More Compact 
Truth Table

J K    Q+

0 0    Q
0 1    0
1 0    1
1 1    Q’

Next state equation:
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Summary of latches and flip flops
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behavior is the same unless input changes
while the clock is high

D Q

CLK

positive
edge-triggered

flip-flop

D Q
G

CLK

transparent
(level-sensitive)

latch

D

CLK

QFF

Qlatch

Comparison of latches and flip-
flops

QFF

Qlatch
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Synchronous Sequential Circuit Analysis
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Synchronous Sequential Circuit
• State Memory – A set of n edge-triggered flip-flops that 

store the current state of the machine 
– All flip-flops are triggered from the same master clock signal 
– All change state together

• Combinational circuit
– Next state logic
– Output logic – Mealy and Moore

Combinational
circuit

Inputs

State Memory

Outputs

Clock

Current
State

Next
State
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Mealy Model

next state = F (current state, inputs)

outputs = G (current state, inputs)
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Moore Model

next state = F (current state, inputs)

outputs = G (current state)
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Analysis - Goals
• Characterize as Mealy or Moore machine
• Determine next state equations, i.e., find the function F

– next state = F (current state, inputs)
• Determine output equations

– Meally: outputs = F (current state, inputs), or
– Moore: outputs = F (current state)

• Express as machine behavior
– State table, or 
– State diagram

• Formulate English description of machine behavior
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An example sequential circuit

• A sequential circuit with two JK flip-flops

• State or memory: Q1Q0

• One input: X; One output: Z
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State table of example circuit

Present State Inputs Next State Outputs
Q1 Q0 X Q1 Q0 Z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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Output Equations
• From the diagram, you can see that

Z = Q1Q0X

Mealy model circuit !!!

Present State Inputs Next State Outputs
Q1 Q0 X Q1 Q0 Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
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Next State Equations – Q(t+1)
• Find the flip-flop input equations/excitation equations
• Substitute excitation equations in the flip-flop’s characteristic equation  

J1 = X’ Q0

K1 = X + Q0

J0 = X + Q1

K0 = X’
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Next State Equations – Q(t+1)

• Next state equations:

– Q1(t+1) = K1’Q1(t) + J1Q1’(t)
= (X + Q0(t))’ Q1(t) + X’ Q0 (t) Q1’(t)
= X’ (Q0(t)’ Q1(t) +  Q0(t) Q1(t)’)
= X’ (Q0(t)  Q1(t))

– Q0(t+1) = K0’Q0(t) + J0Q0’(t)
= X Q0(t) + (X + Q1(t)) Q0’(t)
= X + Q0(t)’ Q1(t) 

• Excitation equations:
– J1 = X’ Q0 and K1 = X + Q0

– J0 = X + Q1 and K0 = X’

• Characteristic equation of the JK flip-flop:
– Q(t+1) = K’Q(t) + JQ’(t)
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State Table & Next State Equations• Q1(t+1) = X’ (Q0(t)  Q1(t))

– Q1=0, Q0=0, X= 0 => Q1(t+1)= 0

• Q0(t+1) = X + Q0(t)’ Q1(t)

– Q1=0, Q0=0, X= 0 => Q0(t+1)= 0

Present State Inputs Next State Outputs
Q1 Q0 X Q1 Q0 Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

0           0   
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State Table & Next State Equations• Q1(t+1) = X’ (Q0(t)  Q1(t))

– Q1=0, Q0=1, X= 1 => Q1(t+1)= 0

• Q0(t+1) = X + Q0(t)’ Q1(t)

– Q1=0, Q0=1, X= 1 => Q0(t+1)= 1

Present State Inputs Next State Outputs
Q1 Q0 X Q1 Q0 Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

0           0   

0           1   
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State Table & Next State Equations
• Q1(t+1) = X’ (Q0(t)  Q1(t))

• Q0(t+1) = X + Q0(t)’ Q1(t)

Present State Inputs Next State Outputs
Q 1 Q0 X Q1 Q0 Z
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 0 0
1 1 1 0 1 1
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State Table & Characteristic Table
• The general JK flip-flop characteristic equation is:

Q(t+1) = K’Q(t) + JQ’(t)
• We can also determine the next state for each input/current 

state combination directly from the characteristic table

J K Q(t+1) Operation
0 0 Q(t) No change
0 1 0 Reset
1 0 1 Set
1 1 Q’(t) Complement
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State Table & Characteristic Table• With these equations, we can make a table 
showing J1, K1, J0 and K0

for the different combinations of present state 
Q1Q0 and input X

J1 = X’ Q0 J0 = X + Q1

K1 = X + Q0 K0 = X’
Present State Inputs Flip-flop Inputs
Q1 Q0 X J1 K1 J0 K0

0 0 0 0 0 0 1
0 0 1 0 1 1 0
0 1 0 1 1 0 1
0 1 1 0 1 1 0
1 0 0 0 0 1 1
1 0 1 0 1 1 0
1 1 0 1 1 1 1
1 1 1 0 1 1 0
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State Table & Characteristic Table

Present State Inputs FF Inputs Next State 
Q1 Q0 X J1 K1 J0 K0 Q1 Q0 
0 0 0 0 0 0 1   
0 0 1 0 1 1 0   
0 1 0 1 1 0 1 1  
0 1 1 0 1 1 0   
1 0 0 0 0 1 1   
1 0 1 0 1 1 0   
1 1 0 1 1 1 1   
1 1 1 0 1 1 0   

 

J K Q(t+1) 
0 0 Q(t) 
0 1 0 
1 0 1 
1 1 Q’(t) 
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State Table & Characteristic Table

Present State Inputs FF Inputs Next State 
Q1 Q0 X J1 K1 J0 K0 Q1 Q0 
0 0 0 0 0 0 1   
0 0 1 0 1 1 0   
0 1 0 1 1 0 1 1  
0 1 1 0 1 1 0   
1 0 0 0 0 1 1   
1 0 1 0 1 1 0   
1 1 0 1 1 1 1   
1 1 1 0 1 1 0   

 

J K Q(t+1) 
0 0 Q(t) 
0 1 0 
1 0 1 
1 1 Q’(t) 

 

 

0



207

A different look
Present State Inputs Next State Outputs

Q 1 Q0 X Q1 Q0 Z
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 0 0
1 1 1 0 1 1

Present State
Q1       Q0

Next State
Output

Z
Input   
X= 0

Input 
X= 1

X= 0 X= 1

0 0 0 0 0 1 0 0
0 1 1 0 0 1 0 0
1 0 1 1 0 1 0 0
1 1 0 0 0 1 0 1
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State diagrams (Mealy model)

Present State Inputs Next State Outputs
Q1 Q0 X Q1 Q0 Z
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 0 0
1 1 1 0 1 1

• We can also represent the state table graphically with a state diagram
• A diagram corresponding to our example state table is shown below

00 01

1011

1/0

0/00/0

0/0

0/0 1/0

1/0
1/1

input output

state
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Sizes of state diagrams

00 01

1011

1/0

0/00/0

0/0

0/0 1/0

1/0
1/1

• Always check the size of your state diagrams
– If there are n flip-flops, there should be 2n nodes in the diagram
– If there are m inputs, then each node will have 2m outgoing arrows

• In our example,
– We have two flip-flops, and thus four states or nodes.
– There is one input, so each node has two outgoing arrows.
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Another Mealy Circuit
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Excitation Equations

•• DD00 = EN’ = EN’ QQ00 ++ EN EN QQ00’’

•• DD11 = EN’ = EN’ QQ11 + EN + EN QQ11’ ’ QQ00 + EN + EN QQ11 QQ00’’
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Next State/Output Equations

•• QQ00(t+1) = D(t+1) = D00 = EN’ = EN’ QQ00 ++ EN EN QQ00’’

•• QQ11(t+1) = D(t+1) = D11 = EN’ = EN’ QQ11 + EN + EN QQ11’ ’ QQ00 + EN + EN QQ11 QQ00’’

•• MAX= EN MAX= EN QQ11 QQ00
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Mealy State Table

Present State
Q1       Q0

Next State
Output
MAX

Input   
EN= 0

Input 
EN= 1

X= 0 X= 1

0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0
1 0 1 0 1 1 0 0
1 1 1 1 0 0 0 1

•• QQ00(t+1) = D(t+1) = D00 = EN’ = EN’ QQ00 ++ EN EN QQ00’’

•• QQ11(t+1) = D(t+1) = D11 = EN’ = EN’ QQ11 + EN + EN QQ11’ ’ QQ00 + EN + EN QQ11 QQ00’’

•• MAX= EN MAX= EN QQ11 QQ00
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Mealy State Diagram

Present State
Q1       Q0

Next State
Output
MAX

Input   
EN= 0

Input 
EN= 1

X= 0 X= 1

0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0
1 0 1 0 1 1 0 0
1 1 1 1 0 0 0 1
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Moore Circuit
X

Remove input 
connection to 

output logic => 
Moore machine
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Next State/Output Equations

•• QQ00(t+1) = D(t+1) = D00 = EN’ = EN’ QQ00 ++ EN EN QQ00’’

•• QQ11(t+1) = D(t+1) = D11 = EN’ = EN’ QQ11 + EN + EN QQ11’ ’ QQ00 + EN + EN QQ11 QQ00’’

•• MAX= MAX= QQ11 QQ00

X
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Moore State Table

Present State
Q1       Q0

Next State
Output
MAXInput   

EN= 0
Input 
EN= 1

0 0 0 0 0 1 0
0 1 0 1 1 0 0
1 0 1 0 1 1 0
1 1 1 1 0 0 1

•• QQ00(t+1) = D(t+1) = D00 = EN’ = EN’ QQ00 ++ EN EN QQ00’’

•• QQ11(t+1) = D(t+1) = D11 = EN’ = EN’ QQ11 + EN + EN QQ11’ ’ QQ00 + EN + EN QQ11 QQ00’’

•• MAX= MAX= QQ11 QQ00
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Moore State Diagram

Present State
Q1       Q0

Next State
Output
MAX

Input   
EN= 0

Input 
EN= 1

X= 0 X= 1

0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0
1 0 1 0 1 1 0 0
1 1 1 1 0 0 0 1
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State Transitions

• MAX : Output of the Mealy circuit
• MAXS : Output of the Moore circuit



Shift register
Circuit for simple shift register 

Basic applications

Ring counters 

Johnson counters

Pseudo-random binary sequences and encryption
Ready-made shift registers are available as integrated circuits, 
such as the ’165

Conversion of data from serial to parallel and vice versa
Large-scale devices such as ‘universal asynchronous receiver 
transmitters’ (UARTs) are based on shift registers

Same functions available in microcontrollers (‘shift’ and ‘rotate’ 
instructions)



Basic shift register
A basic shift register is simply a chain of D flip-flops with a common clock.

D Q D Q D Q D Qserial 
input

serial 
output

clock

Each flip-flop transfers its D input to its Q output at a clock transition.
• The effect is to transfer data along the register, one flip-flop per clock 

cycle.

This type of register is called a serial input-serial output (SISO).

A B C D



Basic shift register
A basic shift register is simply a chain of D flip-flops with a common clock.

D Q D Q D Q D Qserial input
01001110

serial 
output

clock

The table shows the contents of the
register after successive clock transitions.
The assumption is that the register is 
initially clear.
• The number of clock pulses needed to 

fill the register is equal to the number of 
flip-flops used to make the register.

• This is a 4 bit register.

A B C D

cl
oc

k 
pu

ls
es

0 0 1 0 0

input QA QB QC QD

0 0 0 0 0

1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
0 0 1 1 1
0 0 0 1 1
1 1 0 0 1



Timing for a shift register

clock

input

QA

QB

QC

QD

The pattern in successive flip-flops moves to the right with each clock 
cycle to shift the pattern into and out of the register.

tpd



Timing for a shift register

clock

input

QA 

QB

QC

QD tpd

input QA QB QC

0 0 0 0
1
1
1

1
1
1

0
1
1

0
0
1

QD

0 0 1 1 1

0
0
0
0



Applications of a basic shift register
1. Delay line — N stages delay the signal by N clock cycles

2. Multiplication and division by powers of 2, because this just requires a 
shift of the binary number (like multiplication or division by 10 in decimal)

Example: decimal 3 x 4 = 12 becomes 11 x 100 = 1100 in binary The 

arithmetic logic unit (ALU) of a computer processor uses a shift 

register for this purpose.

Warning: the ‘sense’ of a shift — left or right — is usually based on its 
effect on binary numbers written in the usual way. For example,
11 → 1100 is called a left shift. This is clearer if both numbers are 
written with 8-bits as 00000011 → 00001100. Similarly, dividing by 2 
such as 00010110 → 00001011 is a right shift.
This is the opposite of what we usually draw in a counter circuit, with 
the least significant bit (LSB) on the left. Take care!

There is a ‘rotate’ operation where the output from the shift register is fed 
back to the beginning, usually through the ‘carry bit’.



Ring counter
A shift register with its output fed back to its input forms a ring counter.

clock A B C D

D Q D Q D Q D Q

It is much harder to multiply a given frequency to obtain a higher frequency signal. 
A phase locked loop (PLL) is often used.

This can be used to generate an arbitrary binary pattern of length N, where 
N is the number of stages in the ring counter. It must be preloaded with the 
sequence desired, which then rotates around the counter indefinitely. 

One application is to divide down the clock frequency for a slower part of a 
digital system, while keeping everything synchronous. Modern computers 
have several ‘buses’ running at different speeds, where a ring counter is 
used to create the clocks for the various buses.

output



Johnson counter
A ring counter with the complement of its output fed back is a Johnson 
counter.

clock A B C D

This generates longer sequences than a simple ring counter.

For example, a ring counter with 3 stages produces a cycle of 3
states — a waste as there are 23 = 8 states in all.

A Johnson counter with 3 stages has a cycle of 6 and a separate cycle
of 2. It is important to ensure that it follows the correct one!

D Q D Q D Q D Q output



Johnson counter
A ring counter with the complement of its output fed back is a Johnson 
counter.

clock A B C D

D Q D Q D Q D Q output

QA QB QC

0
1
1
1
0
0

0 1 0

0
0
1
1
1
0

0
0
0
1
1
1

0 11



Pseudo-random number generator

• Pseudo-random sequences of 1s and 0s have many applications, notably in encryption. They 
appear to be random over ‘short’ times but the sequence eventually repeats, hence the more accurate 
term ‘pseudo-random’.

• Also, they can be reproduced perfectly if you know both:

• the method used to generate the sequence

• the state in the sequence at which to start

• This is an important feature! — see next sheet.

• The circuit above has a period of 24 – 1 = 15 
• (the missing state is 0000 —why?). 

D Q D Q D Q D Q output

A ring counter with feedback through an exclusive-or gate makes a simple 
pseudo-random number generator.



Pseudo-random binary sequences and encryption

transmit data over 
insecure link

sender

receiver

exclusive or

looks like binary 
‘noise’ —
apparently random

?

your data (plain text) pseudo-random binary sequence



Pseudo-random binary sequences and encryption

transmit data over 
insecure link

sender

receiver

exclusive or

looks like binary 
‘noise’ —
apparently random

?

your data (plain text) pseudo-random binary sequence

your data in plain text again

exclusive or

same pseudo-random binary sequence

if you exclusive-or a bit
with the same value (0 or
1) twice, you get the 
initial value back again.



Pseudo-random binary sequences and encryption

transmit data over 
insecure link

sender

receiver

exclusive or

looks like binary 
‘noise’ —
apparently random

?

your data (plain text) pseudo-random binary sequence

your data in plain text again

exclusive or

same pseudo-random binary sequence

if you exclusive-or a bit
with the same value (0 or
1) twice, you get the 
initial value back again.

How do we ensure 
that both sender 
and receiver use 
the same pseudo-
random binary 
sequence?

(https) or with a digital mobile phone.
This is the basis of the method used to encrypt data sent over the internet



Transmission of data — serial format
Data often has to be transmitted from one computer to another, or from a 
computer to peripheral equipment (printer, modem, …). This can be done in:

• serial format, one bit at a time
• parallel format, several bits at a time (e.g. byte at a time, 8 bits)

Serial format is most commonly used because it is simpler. Only a few wires 
are needed:

• traditional serial ‘COM’ ports (RS-232) need only 3 wires (transmitted 
data, received data and ground — but more may be used for control)

• universal serial bus (USB, common on modern computers) uses 4 
wires (two for differential data plus power and ground)

Traditional serial transmission was slow but modern systems use much
faster rates (USB version 1 up to 12 Mbits per second, FireWire 1 up to
400 Mbits per second), version 2 of both even faster.

1 0 0 1 1 0 1 1 0 1 0 1bit stream
simple serial



Parallel data
Where higher speed is required, several bits (usually a small number of 
bytes, each of 8 bits) may be moved at once. More complicated connections 
are needed — more wires. Common applications include:

• inside the processor itself, e.g. our microcontroller handles bytes
• inside a computer system on the bus (e.g. PCI) and interfaces to disk 

drives (e.g. e.g. SCSI or IDE)— but these are now mainly serial

Interfaces have changed to serial because it is hard to ensure that all bits on 
a parallel bus arrive at the same time at the high speed of modern systems.



Parallel data

a UART (universal asynchronous receiver transmitter) or something similar.

Where higher speed is required, several bits (usually a small number of 
bytes, each of 8 bits) may be moved at once. More complicated connections 
are needed — more wires. Common applications include:

• inside the processor itself, e.g. our microcontroller handles bytes
• inside a computer system on the bus (e.g. PCI) and interfaces to disk 

drives (e.g. e.g. SCSI or IDE)— but these are now mainly serial

Interfaces have changed to serial because it is hard to ensure that all bits on 
a parallel bus arrive at the same time at the high speed of modern systems.

How do you interface a serial device to a computer?

How do we interface an external device that transmits serially with the bus of 
a computer that transfers one byte (8 bits) at a time?

• Use a shift register.
In practice this would almost certainly be buried inside a larger circuit called



Use of shift register to serialize data

D Q D Q D Q D Q serial 
output

A B C D

Extra logic is added to the basic shift register so that all the flip-flops can be loaded 
in parallel (simultaneously), controlled by a shift/load input.

Once the data have been loaded, the clock is enabled and the values are shifted 
once per clock cycle. This causes the input data to be transferred to the output, one 
bit at a time — serial output (PISO).

The opposite process is used to read in serial data, fill up the shift register, and 
transfer it in parallel to a bus when the register is full (SIPO).

The register can also be parallel input – parallel output (PIPO).

Shift or rotate instructions can be used for the same process inside a microcontroller 
(if it doesn’t have a UART built in, which many do).

parallel data in

parallel load
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• The data stored in ROM are always there, whether the power 
is on or not. A ROM can be removed from the PC, and then 
replaced, and the data it contains will still be there. 

• Data stored in these chips is unchangeable, provides a 
measure of security against accidental or malicious changes to 
its contents. Unlike RAM, which can be changed as easily as it 
is read

– We will look at five of them to see how they differ in the 
way they are programmed, erased, and reprogrammed

ROM
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Mask ROM
• The mask ROM is usually referred to simply as a

ROM.

• A regular ROM is constructed from hard-wired
logic, encoded in the silicon itself to perform a specific
function that cannot be changed.

• They consume very little power and reliable but cannot
reprogram or rewrite.

• Several types of user programmable ROMs have been
developed to overcome this disadvantage.
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Programmable ROM (PROM)

• A mask ROM chip is very expensive and time-consuming to
create in small quantities from scratch.

• Mainly, developers created a type of ROM known as
programmable read-only memory (PROM).

• This is basically a blank ROM chip that can be written only
once using special equipment called a PROM programmer.

• PROM chips have a grid of columns and rows just as ordinary
ROMs do.
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• The difference is that every intersection of a column and row
in a PROM chip has a fuse connecting them.

• Since all the cells have a fuse, the initial (blank) state of a
PROM chip is all 1s.

• The user cans selectively burn/blow any of these fuse links to
produce the desired stored memory data.

• A charge sent through a column will pass through the fuse in a
cell to a grounded row indicating a value of 1.

Programmable ROM (PROM)
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• To change the value of a cell to 0, you use a PROM 
programmer to send a specific amount of current to the cell 
to break the connection between the column and row by 
burning out the fuse. 

• This process is known as burning the PROM. 

• Very few bipolar PROMs are still available today. 

• TMS27PC256 is a very popular CMOS PROM with a capacity of 
32K  8.

Programmable ROM (PROM)
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Erasable Programmable ROM (EPROM)

• An EPROM is a ROM that can be erased and
reprogrammed as often as desired. Once programmed.

• The EPROM is a non-volatile memory that will hold its stored
data indefinitely.

• A little glass window is provided in the top of the ROM
package.

• Ultraviolet light of a specific frequency can be shined through
this window for a specified period of time, which will erase all
cells at the same time so that an erased EPROM stores all 1s
and allow it to be reprogrammed again.
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Erasable Programmable ROM (EPROM)

• EPROMs are configured using an EPROM
programmer that provides voltage at specified levels
depending on the type of EPROM used.

• Obviously this is much more useful than a regular
PROM, but it does require the erasing light.

• EPROMs are available in a wide range of capacities
and access times. The 27C64 is an example of 8K x 8
CMOS EPROM
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Electrically Erasable Programmable  ROM (EEPROM)

• They require dedicated equipment and a labor-
intensive process to remove and reinstall them each
time a change is necessary.

• The next type of ROM is the EEPROM, which can be
erased under software control.

• This is the most flexible type of ROM, and is now
commonly used for holding BIOS programs
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Electrically Erasable Programmable  ROM (EEPROM)

• In EEPROMs the chip does not have to be removed
to be rewritten, the entire chip need not be fully
erased to change a specific portion of it, and
changing the contents does not require additional
dedicated equipment.

• Instead of using UV light, you can return the
electrons in the cells of an EEPROM to normal with
the localized application of an electric field to each
cell.
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Electrically Erasable Programmable  ROM (EEPROM)

• This erases the targeted cells of the EEPROM, 
which can then be rewritten. 

• EEPROMs are changed 1 byte at a time, which 
makes them versatile but slow. 

• The Intel 2864 is an example of EEPROM with 
8K  8 array with 13 address inputs and eight 
data I/O pins
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Flash Memory

• Flash memories are so called because of their rapid
erase and write times.

• EEPROM chips speed is too slow to use in many
products that required quick changes to the data
stored on the chip.

• So a new type of EEPROM called Flash memory that
uses in-circuit wiring to erase by applying an
electrical field to the entire chip or to predetermined
sections of the chip called blocks.
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Flash Memory

• Flash memory works much faster than
traditional EEPROMs because it writes data in
chunks, usually 512 bytes in size, instead of 1
byte at a time.

• The 28F256A CMOS IC is an example of flash
memory chip, which has a capacity of 32K  8.



The SRAM Memory Cell

• Circuit Schematic:
– 4 NFETs and 2 PFETs:  T1 & T2 called active devices;  T3 

& T4 called the I/O devices;  T5 & T6 sometimes called 
loads.

– The cell is comprised of two cross-coupled inverters 
(positive feedback).

– 2 vertical lines (bit lines B0 & B1) are used for sensing 
state of cell and writing data in the cell

– 1 horizontal line (word line WL) is used to select a row 
of cells for writing or reading and to prevent the 
unselected rows of cells from being disturbed.

• Circuit Operation:
– The cell has two stable states:  “0” and “1”

• “0” State = Node X0 high and Node X1 low;  T2 & T5 are 
ON, T1 & T6 are OFF.

• “1” State = Node X1 high and Node X0 low;  T1 & T6 are 
ON;  T2 & T5 are OFF.

• No dc current flows in either state. 
– Write:  raise WL to Vdd;  pull one bit line high & pull the 

other bit line low
– Read:  raise WL to Vdd;  precharge bit lines to ½ Vdd

Vdd

B1B0

WL

X0 X1

T5 T6

T2T1

T3
T4



SRAM Memory Array Organization
• READ Operation:

– Word Decode circuitry selects one of 
n word lines and drives high to Vdd 
(say WL2);  other word lines held at 
gnd.

– Bit Lines all precharged to half Vdd
– Selected cell’s I/O devices turned ON 

and apply a V to bit line pair
– Sense amp triggers on bit line V and 

stores read data “0” or “1”
• WRITE Operation:

– Selected WL is driven high to Vdd by 
word decode circuitry turning ON I/O 
devices in selected cells

– Selected bit column has one BL pulled 
high to Vdd and the other pulled low 
to gnd, thus writing the selected cell.

– Unselected bit columns merely 
perform a READ operation.

SRAM
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11
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Decode

(Row
Decode)

Sense Amplifiers
and Off-Chip Drivers/Buffers

Bit Decode (Column Decode)
and Write Drivers

SRAM
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SRAM
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SRAM
Cell
21

SRAM
Cell
22

SRAM
Cell
23

SRAM
Cell
31

SRAM
Cell
32

SRAM
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33

Data Out

Word
Addr

Bit
Addr

Data In
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Combinational PLDs

• A combinational PLD is an integrated circuit with 
programmable gates divided into an AND array and an OR 
array to provide an AND-OR sum of product implementation.

• PROM: fixed AND array constructed as a decoder and 
programmable OR array.

• PAL: programmable AND array and fixed OR array.

• PLA: both the AND and OR arrays can be programmed.
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Combinational PLDs
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Programmable Logic Array
• Fig.7-14, the decoder in PROM is replaced by an array of AND 

gates that can be programmed to generate any product term of 
the input variables.

• The product terms are then connected to OR gates to provide the 
sum of products for the required Boolean functions.

• The output is inverted when the XOR input is connected to 1 
(since x⊕1 = x’). The output doesn’t change and connect to 0 
(since x⊕0 = x).
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PLA

F1 = AB’+AC+A’BC’
F2 = (AC+BC)’
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Programming Table

1. First: lists the product terms numerically

2. Second: specifies the required paths between 
inputs and AND gates

3. Third: specifies the paths between the AND and OR 
gates

4. For each output variable, we may have a T(ture) or 
C(complement) for programming the XOR gate
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Simplification of PLA

• Careful investigation must be undertaken in order to 
reduce the number of distinct product terms, PLA 
has a finite number of AND gates.

• Both the true and complement of each function
should be simplified to see which one can be 
expressed with fewer product terms and which one 
provides product terms that are common to other 
functions.
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Example
Implement the following two Boolean functions with a PLA:

F1(A, B, C) = ∑(0, 1, 2, 4)
F2(A, B, C) = ∑(0, 5, 6, 7)

The two functions are simplified in the maps of Fig.7-15

1 elements

0 elements
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PLA table by simplifying the function

• Both the true and complement of 
the functions are simplified in sum 
of products.

• We can find the same terms from 
the group terms of the functions of 
F1, F1’,F2 and F2’ which will make the 
minimum terms.

F1 = (AB + AC + BC)’
F2 = AB + AC + A’B’C’
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PLA implementation

AB

AC

BC

A’B’C’
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Programmable Array Logic
• The PAL is a programmable logic device with a fixed OR array and a 

programmable AND array.
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PAL

• When designing with a PAL, the Boolean functions 
must be simplified to fit into each section.

• Unlike the PLA, a product term cannot be shared 
among two or more OR gates. Therefore, each 
function can be simplified by itself without regard to 
common product terms.

• The output terminals are sometimes driven by three-
state buffers or inverters.
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Example
w(A, B, C, D) = ∑(2, 12, 13)
x(A, B, C, D) = ∑(7, 8, 9, 10, 11, 12, 13, 14, 15)
y(A, B, C, D) = ∑(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)
z(A, B, C, D) = ∑(1, 2, 8, 12, 13)

Simplifying the four functions as following Boolean functions:

w = ABC’ + A’B’CD’
x = A + BCD
w = A’B + CD + B’D’
w = ABC’ + A’B’CD’ + AC’D’ + A’B’C’D = w + AC’D’ + A’B’C’D
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PAL Table
• z has four product terms, and we can replace by w with two 

product terms, this will reduce the number of terms for z from 
four to three.



264

PAL implementation

A

B

C

D

w

x

y

z
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Fuse map for example
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Sequential Programmable Devices

• Sequential programmable devices include both gates 
and flip-flops.

• There are several types of sequential programmable 
devices, but the internal logic of these devices is too 
complex to be shown here.

• We will describe three major types without going 
into their detailed construction.
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Sequential Programmable Devices

1. Sequential (or simple) Programmable Logic Device (SPLD)

2. Complex Programmable Logic Device (CPLD)

3. Field Programmable Gate Array (FPGA)
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FPLS

• The first programmable device developed to support 
sequential circuit implementation is the field-programmable 
logic sequencer(FPLS).

• A typical FPLS is organized around a PLA with several outputs 
driving flip-flops.

• The flip-flops are flexible in that they can be programmed to 
operate as either JK or D type.

• The FPLS did not succeed commercially because it has too 
many programmable connections.
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SPLD

• Each section of an SPLD is called a macrocell.

• A macrocell is a circuit that contains a sum-of-
products combinational logic function and an 
optional flip-flop.

• We will assume an AND-OR sum of products but in 
practice, it can be any one of the two-level 
implementation presented in Sec.3-7.
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Macrocell
• Fig.7-19 shows the logic of a basic macrocell.
• The AND-OR array is the same as in the combinational PAL shown 

in Fig.7-16.
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CPLD
• A typical SPLD has from 8 to 10 macrocells within one IC package. 

All the flip-flops are connected to the common CLK input and all 
three-state buffers are controlled by the EO input.

• The design of a digital system using PLD often requires the 
connection of several devices to produce the complete 
specification. For this type of application, it is more economical to 
use a complex programmable logic device (CPLD).

• A CPLD is a collection of individual PLDs on a single integrated 
circuit.
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CPLD
• Fig.7-20 shows a general configuration of a CPLD. It consists of 

multiple PLDs interconnected through a programmable switch 
matrix. 8 to 16 macrocell per PLD.
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Gate Array

• The basic component used in VLSI design is the gate 
array.

• A gate array consists of a pattern of gates fabricated 
in an area of silicon that is repeated thousands of 
times until the entire chip is covered with the gates.

• Arrays of one thousand to hundred thousand gates 
are fabricated within a single IC chip depending on 
the technology used.
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FPGA

• FPGA is a VLSI circuit that can be programmed in the user’s 
location.

• A typical FPGA logic block consists of look-up tables, 
multiplexers, gates, and flip-flops.

• Look-up table is a truth table stored in a SRAM and provides 
the combinational circuit functions for the logic block.
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Differential of RAM and ROM in FPGA

• The advantage of using RAM instead of ROM to store the 
truth table is that the table can be programmed by writing 
into memory.

• The disadvantage is that the memory is volatile and presents 
the need for the look-up table content to be reloaded in the 
event that power is disrupted.



Algorithmic State 
Machines



Introduction

Digital system is specified by the 
following three components:

• The set of registers in the system
• The operations that are performed on the 

data stored in the registers.
• The control that supervises the sequences 

of operations in the system.



Control and Datapath Interaction



Datapath

• Binary information in digital systems classified as either data or control.

• Data – bits of information manipulated by performing arithmetic and logic 
operations.

• Hardware components realizing above operations are adders, decoders, 
multiplexers, counters e.t.c



Control Path

• Command signals used to supervise execution of algorithms by datapath.

• Bi-directional communication with datapath through status conditions used 
to determine the sequence of control signals.

• Control logic inherently sequential.

• Control logic is usually implemented using FSMs



• Often we have to implement an algorithm in hardware instead of software

• Algorithm is a well defined procedure consisting of a finite number of steps 
to the solution of a problem.

• It is often hard to translate the algorithm into an FSM.

• ASMs can serve as stand-alone sequential network model.

Algorithm Implementation



Algorithmic State Machine
•Used to graphically describe the operations of an FSM more concisely

•Resembles conventional flowcharts – differs in

interpretation.

•Conventional flowchart – sequential way of

representing procedural steps and decision paths

for algorithm

-No time relations incorporated

•ASM chart – representation of sequence of

events together with timing relations between

states of sequential controller and events

occurring while moving between steps



ASM Chart
•Three basic elements: state box, decision

box and conditional box

-State and decision boxes used in conventional

flowcharts

-Conditional box characteristic to ASM

•State box

-Used to indicate states in control sequence

•Register operations and output signals used to

control generation of next state written



State box
•Represents one state in the ASM.

•May have an optional state output list.

•Single entry.

•Single exit to state or decision boxes.



State Box

State name T3

•Binary code of T3 – 011

•Register operation R <- 0

•START – name of

outputs signal generated

in this stage



Decision box

• Provides for next alternatives and 
conditional outputs.

• Conditional output based on logic 
value of Boolean expression involving 
external input variables and status 
information.

• Single entry.
• Dual exit, denoting if Boolean 

expression is true or false.
• Exits to decision, state or conditional 

boxes.



Decision Box
•Input condition subject to

test inside diamond shape

box

•Two or more outputs

represent exit paths

dependant on value of

condition in decision box

•Two paths for binary based
conditions



Conditional output box

• Provides a listing of output variables that are to 
have a value logic-1, i.e., those output variables 
being asserted.

• Single entry from decision box.
• Single exit to decision or state box.



•In state T1

Output signal START

generated

Status of input E

checked

•If E = 1, R <- 0,

otherwise remains

unchanged

•Conditional

operation executed

depending on result

of coming from

decision box

Conditional Box



ASM Block

• Consists of the interconnection of a single state box 
along with one or more decision and/or conditional 
boxes.

• It has one entry path which leads directly to its state box, 
and one or more exit paths.

• Each exit path must lead directly to a state, including the 
state box in itself.

• A path through an ASM block from its state box to an exit 
path is called a link path.



Timing Considerations 
All sequential elements in datapath and control

path controlled by master-clock generator.

Does not necessarily imply single clock in design.

•Multiple clocks can be obtained through division of clock

signals from master-clock generator.

•Not only internal signals, but also inputs

synchronized with clock.

•Normally, inputs supplied by other devices working

with the same master clock.

•Some inputs can arrive asynchronously

Difficult to handle by synchronous designs, require

asynchronous glue-logic.



•In conventional flowchart, evaluation 
of each chart element takes one clock 
cycle

Step 1: Reg A incremented

Step 2: Condition E evaluated

Step 3: Based on evaluation results, 
state

T2, T3 or T4 entered

•In ASM the entire block considered 

as one unit

•All operations within block occurring

during single edge transition

The next state evaluated during the 
same clock

System enters next state T2, T3 or T4 
during transition of next clock

ASM Block



ASM Block

• An ASM block describes the operation of the system during the state 
time in which it is in the state associated with the block.

• The outputs listed in the state box are asserted.
• The conditions indicated in the decision boxes are evaluated 

simultaneously to determine which link path is to be followed.
• If a conditional box is found in the selected path then the outputs 

found in its output list are asserted.
• Boolean expression may be written for each link path. The selected 

link paths are those that evaluate to logic-1.



Analyze a sequential circuit using JK Flip-
Flops



Analysis (JK FF)
The flip-flop input equations are:

The sequential circuit output equation is:

The next-state equations for the flip-flops are:



The corresponding next-state (K-) maps are



The state table, and transition table, is then:

The state diagram can then be drawn from the state table:



MODE OF OPERATIONS 
Steady-state condition: Current states and next states are the 
same Difference between Y and y will cause a transition 

Fundamental mode: 
•No simultaneous changes of two or more variables
• The time between two input changes must be longer than the 
time it takes the circuit to a stable state 
•The input signals change one at a time and only when the circuit is 
in a stable condition Fundamental Mode 

Pulse Mode:
 the inputs and outputs are represented by pulses
only one input is allowed to have pulse present at any time
 Similar to synchronous sequential circuits except without a clock 
signal


